Research Article
BibTex RIS Cite

Antioxidant properties of hawthorn vinegar and its potential role in bone health

Year 2025, Volume: 44 Issue: 2, 95 - 103, 31.12.2025
https://doi.org/10.30782/jrvm.1793251

Abstract

This is the first study to evaluate the effects of ultrasound-treated hawthorn vinegar on bone biomechanical performance, plasma biochemical markers, and bone ash content. The findings provide new insights into how bioactive compounds in vinegar can support skeletal health. The objective of this study is to evaluate the effects of ultrasound-treated hawthorn vinegar on bone health by assessing its impact on bone biomechanics, mineral metabolism, and biochemical properties in rats. Our study investigated the effects of ultrasound-treated hawthorn vinegar on bone biomechanics, biochemical properties, and overall bone quality. Forty female rats were randomly assigned to control and experimental groups, receiving either untreated or ultrasound-treated hawthorn vinegar at doses of 0.5 ml/kg and 1 ml/kg. To assess the potential benefits of hawthorn vinegar on skeletal health, we analyzed bone mechanical properties, plasma and intestinal calcium and phosphorus levels, cortical bone area, and bone ash content. The results revealed that rats receiving ultrasound-treated hawthorn vinegar exhibited a significant increase in ultimate moment values, reduced maximum angles at failure, and higher energy to failure values compared to the control group, indicating enhanced bone strength. Additionally, it led to increased plasma calcium levels, reduced intestinal phosphorus concentrations, and higher tibial ash content. These findings suggest that ultrasound-treated hawthorn vinegar may promote bone health by improving biomechanical strength and mineral metabolism, thereby contributing to overall bone quality. The findings highlight the beneficial effects of hawthorn vinegar on bone health, attributed to its high antioxidant and phenolic content. As the first to compare ultrasound-treated and untreated hawthorn vinegar, the results emphasize the role of bioactive compounds in enhancing bone biomechanics, suggesting its potential as a functional food for skeletal health.

Ethical Statement

The current study protocol was approved by Tekirdag Namik Kemal University Animal Experiments Local Ethics Committee (Approval Number: T2022-979).

Supporting Institution

Tekirdag Namik Kemal University

Project Number

NKUBAP.10.GA.21.346

References

  • Licini C, Vitale-Brovarone C, Mattioli-Belmonte M. Collagen and noncollagenous proteins molecular crosstalk in the pathophysiology of osteoporosis. Cytokine Growth Factor Rev. 2019;49:59-69.
  • Boskey AL, Coleman R. Aging and bone. J Dent Res. 2010;89(12):1333-1348.
  • Cashman KD. Diet, nutrition, and bone health. J Nutr. 2007;137(11 Suppl):2507S-2512S. doi:10.1093/jn/137.11.2507S.
  • Ahn CB, Je JY. Bone health-promoting bioactive peptides. J Food Biochem. 2019;43(1):e12529.
  • Rizzoli R, Biver E, Brennan-Speranza TC. Nutritional intake and bone health. Lancet Diabetes Endocrinol. 2021;9(9):606-621.
  • Faienza MF, Giardinelli S, Annicchiarico A, Chiarito M, Barile B, Corbo F, Brunetti G. Nutraceuticals and functional foods: A comprehensive review of their role in bone health. Int J Mol Sci. 2024;25(11):5873.
  • Robinson MM, Zhang X. The World Medicines Situation Traditional Medicines, Global Situation, Issues, and Challenges. 3rd ed. World Health Organization (WHO); 2011: p1-14.
  • Hosseinimehr SJ, Azadbakht M, Abadi AJ. Protective effect of hawthorn extract against genotoxicity induced by cyclophosphamide in mouse bone marrow cells. Environ Toxicol Pharmacol. 2008;25(1):51-56.
  • Hatipoğlu M, Sağlam M, Köseoğlu S, Köksal E, Keleş A, Esen H. The effectiveness of Crataegus orientalis M. Bieber. (Hawthorn) extract administration in preventing alveolar bone loss in rats with experimental periodontitis. PLoS One. 2015;10(6):e0128134.
  • Hosseinimehr SJ, Azadbakht M, Mousavi SM, Mahmoudzadeh A, Akhlaghpoor S. Radioprotective effects of hawthorn fruit extract against gamma irradiation in mouse bone marrow cells. J Radiat Res. 2007;48(1):63-68.
  • Zhang J, Chai X, Zhao F, Hou G, Meng Q. Food applications and potential health benefits of hawthorn. Foods. 2022;11(18):2861.
  • Dalli E, Milara J, Cortijo J, Morcillo EJ, Cosín-Sales J, Sotillo JF. Hawthorn extract inhibits human isolated neutrophil functions. Pharmacol Res. 2008;57(6):445-450.
  • Halver J, Wenzel K, Sendker J, Carrillo García C, Erdelmeier CAJ, Willems E, Mercola M, Symma N, Könemann S, Koch E, Hensel A, Schade D. Crataegus extract WS®1442 stimulates cardiomyogenesis and angiogenesis from stem cells: A possible new pharmacology for hawthorn? Front Pharmacol. 2019;10:1357.
  • European Medicines Agency. Hawthorn leaf and flower-Crataegus spp., folium cum flore. http://www.ema.europa.eu/ema/index.jspcurl=pages/medicines/herbal/medicines/herbal_med_000061.jsp&mid=WC0b01ac058001fa1d. Published May 31, 2016. Accessed January 21, 2025.
  • Balthazar CF, Santillo A, Guimarães JT, Bevilacqua A, Corbo MR, Caroprese M, Marino R, Esmerino EA, Silva MC, Raices RS, Freitas MQ, Cruz AG, Albenzio M. Ultrasound processing of fresh and frozen semi-skimmed sheep milk and its effects on microbiological and physicochemical quality. Ultrason Sonochem. 2019;51:241-248.
  • Villamiel M, De Jong P. Influence of high-intensity ultrasound and heat treatment in continuous flow on fat, proteins, and native enzymes of milk. J Agric Food Chem. 2000;48(2):472-478.
  • Ranjha MMAN, Irfan S, Lorenzo JM, Shafique B, Kanwal R, Pateiro M et al. Sonication, a potential technique for extraction of phytoconstituents: A Systematic Review. Processes, 2021; 9(8): 1406.
  • Aadil RM, Zeng XA, Han Z, Sun DW. Effects of ultrasound treatments on quality of grapefruit juice. Food Chem. 2013;141(3):3201-3206.
  • Ahmad T, Butt MZ, Aadil RM, Inamur-Raheem MA, Bekhit AE, Guimarães JT, Balthazar CF, Rocha RS, Esmerino EA, Freitas MQ, Silva MC, Sameen A, Cruz AG. Impact of nonthermal processing on different milk enzymes. Int J Dairy Technol. 2019;72(4):481-495.
  • Estivi L, Brandolini A, Condezo-Hoyos L, Hidalgo A. Impact of low-frequency ultrasound technology on physical, chemical and technological properties of cereals and pseudocereals. Ultrason Sonochem. 2022;86:106044.
  • Peña-González E, Alarcón-Rojo AD, Rentería A, García I, Santellano E, Quintero A, Luna L. Quality and sensory profile of ultrasound-treated beef. Ital J Food Sci. 2017;29(3):463-475.
  • Xu DP, Zheng J, Zhou Y, Li Y, Li S, Li HB. Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: Optimization and comparison with conventional methods. Food Chem. 2017;217:552-559. Yıkmış S, Aksu F, Sandıkçı Altunatmaz S, Çöl BG. Ultrasound processing of vinegar: Modelling the impact on bioactives and other quality factors. Foods. 2021;10(8):1703.
  • Padureanu C, Badarau CL, Maier A, Padureanu V, Lupu MI, Canja CM, Branescu GR, Bujor OC, Matei F, Poiana MA, Alexa E, Nedelcu A. Ultrasound treatment influence on antioxidant properties of blueberry vinegar. Fermentation. 2023;9(7):600.
  • Öğüt, S, Türkol M., Yıkmış S., Bozgeyik E., Abdi G., Kocyigit E., Aadil RM., Seyidoglu N., Karakçı D., Tokatlı N. 2025. Ultrasound-assisted enhancement of bioactive compounds in hawthorn vinegar: A functional approach to anticancer and antidiabetic effects. Ultrasonics Sonochemistry 114 (2025) 107245.
  • Ho CW, Lazim AM, Fazry S, Zaki UKHH, Lim SJ. Varieties, production, composition and health benefits of vinegars: A review. Food Chem. 2017;221:1621-1630.
  • Yıkmış S. Optimization of Uruset apple vinegar production using response surface methodology for the enhanced extraction of bioactive substances. Foods. 2019;8(3):107.
  • Singleton V, Rossi A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagent. Am J Enol Vitic. 1965;16:144-158.
  • Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999;64(4):555-559.
  • AOAC (Association of Official Analytical Chemists). Official Methods of Analysis. 21st ed. AOAC International; 2000.
  • Apak R, Güçlü K, Özyürek M, Karademir SE. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem. 2004;52(26):7970-7981.
  • Kumaran A, Karunakaran RJ. Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chem. 2006;97(1):109-114.
  • Rai S, Wahile A, Mukherjee K, Saha BP, Mukherjee PK Antioxidant activity of Nelumbo nucifera (sacred lotus) seeds. J Ethnopharmacol. 2006;104(3):322-327.
  • Karakçı D, Bakır B, Seyidoglu N, Yıkmış S. Ultrasound-treated and thermal-pasteurized hawthorn vinegar: Antioxidant and lipid profiles in rats. Nutrients. 2023;15(18):3933.
  • Herrera-Ponce AL, Salmeron-Ochoa I, Rodriguez-Figueroa JC, Santellano-Estrada E, Garcia-Galicia IA, Vargas-Bello-Pérez E, Alarcon-Rojo AD. Effects of ultrasound versus pasteurization on whey-oat beverage processing: Quality and antioxidative properties. Processes. 2022;10(8):1572.
  • Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. 5th ed. Oxford University Press; 2015:p35-60.
  • Savasky BM, Mascotti DP, Patel N, Rodriguez-Collazo E. Nutritional and pharmacological effects on oxidative stress in soft tissue and bone remodeling. J Nutr Metab. 2018;2018:4183407.
  • Ohyama Y, Ito J, Kitano VJ, Shimada J, Hakeda Y. The polymethoxy flavonoid sudachitin suppresses inflammatory bone destruction by directly inhibiting osteoclastogenesis due to reduced ROS production and MAPK activation in osteoclast precursors. PLoS One. 2018;13(1):e0191192.
  • Domazetovic V, Marcucci G, Iantomasi T, Brandi ML, Vincenzini MT. Oxidative stress in bone remodeling: role of antioxidants. Clin Cases Miner Bone Metab. 2017;14(2):209-216
  • Marcucci G, Domazetovic V, Nediani C, Ruzzolini J, Favre C, Brandi ML. Oxidative Stress and Natural Antioxidants in Osteoporosis: Novel Preventive and Therapeutic Approaches. Antioxidants. 2023;12(2):373.
  • Nicolin V, De Tommasi N, Nori SL, Costantinides F, Berton F, Di Lenarda R. Modulatory Effects of Plant Polyphenols on Bone Remodeling: A Prospective View From the Bench to Bedside. Front Endocrinol. 2019;10:494.
  • Sheweita SA, Khoshhal KI. Calcium metabolism and oxidative stress in bone fractures: role of antioxidants. Review Curr Drug Metab. 2007;8(5):519-25.
  • Valentino A, Di Cristo F Bosetti M, Amaghnouje A, Bousta D, Conte R, Calarco A. Bioactivity and Delivery Strategies of Phytochemical Compounds in Bone Tissue Regeneration. Appl Sci. 2021;11(11):5122.
  • Corey RM, Cannada LK. Nutritional supplementation of fracture healing. In: Hoppenfeld JD, ed. Treatment and Rehabilitation of Fractures. 2nd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2021.
  • Mottaghi P, Nasri P. Antioxidant and bone; protect your future: A brief review. Iran J Public Health. 2021;50(9):1783-1788.
  • Chisari E, Shivappa N, Vyas S. Polyphenol-rich foods and osteoporosis. Curr Pharm Des. 2019;25(22):2459-2466.
  • Bello A, Hester P, Gerard P, Zhai W, Peebles E. Effects of commercial in ovo injection of 25-hydroxycholecalciferol on bone development and mineralization in male and female broilers. Poult Sci. 2014;93(11):2734-2739.
  • Jerez-Bogota K, Sánchez C, Ibagon J, Jlali M, Cozannet P, Preynat A, Woyengo T. Growth performance and nutrient digestibility of growing and finishing pigs fed multienzyme-supplemented low-energy and -amino acid diets. Transl Anim Sci. 2020;4(2):602-615.
  • Ominsky M, Li X, Asuncion F, Barrero M, Warmington K, Dwyer D, Stolina M, Geng Z, Grisanti M, Tan HL, Corbin T, McCabe J, Simonet WS, Ke HZ, Kostenuik P. RANKL inhibition with osteoprotegerin increases bone strength by improving cortical and trabecular bone architecture in ovariectomized rats. J Bone Miner Res. 2008;23(5):672-682.
  • Rocabado J, Kaku M, Nozaki K, Ida T, Kitami M, Aoyagi Y, Uoshima K. A multi-factorial analysis of bone morphology and fracture strength of rat femur in response to ovariectomy. J Orthop Surg Res. 2018;13(1):318.
  • Minami M, Ikoma K, Onishi O, Horii M, Itoh K, Takahashi K. Histological assessment of cortical bone changes in diabetic rats. J Orthop Surg Res. 2022;17:568.

Alıç sirkesinin antioksidan özellikleri ve kemik sağlığındaki potansiyel rolü

Year 2025, Volume: 44 Issue: 2, 95 - 103, 31.12.2025
https://doi.org/10.30782/jrvm.1793251

Abstract

Bu çalışma, ultrasonla muamele edilmiş alıç sirkesinin kemik biyomekanik performansı, plazma biyokimyasal belirteçleri ve kemik kül içeriği üzerindeki etkilerini değerlendiren ilk araştırmadır. Bulgular, sirkedeki biyoaktif bileşiklerin iskelet sağlığını nasıl destekleyebileceğine dair yeni içgörüler sunmaktadır. Bu çalışmanın amacı, ultrasonla muamele edilmiş alıç sirkesinin kemik sağlığı üzerindeki etkilerini; kemik biyomekaniği, mineral metabolizması ve biyokimyasal özellikler üzerindeki etkilerini değerlendirerek incelemektir. Çalışmamızda, ultrasonla muamele edilmiş alıç sirkesinin kemik biyomekaniği, biyokimyasal özellikleri ve genel kemik kalitesi üzerindeki etkileri araştırılmıştır. Kırk dişi sıçan rastgele kontrol ve deney gruplarına ayrılmış, gruplara işlenmemiş veya ultrasonla muamele edilmiş alıç sirkesi 0.5 ml/kg ve 1 ml/kg dozlarda uygulanmıştır. Alıç sirkesinin iskelet sağlığı üzerindeki olası faydalarını değerlendirmek amacıyla kemik mekanik özellikleri, plazma ve bağırsak kalsiyum ve fosfor düzeyleri, kortikal kemik alanı ve kemik kül içeriği analiz edilmiştir. Sonuçlar, ultrasonla muamele edilmiş alıç sirkesi verilen sıçanlarda, kontrol grubuna kıyasla nihai moment değerlerinde anlamlı artış, kırılmada maksimum açılarda azalma ve kırılmaya kadar geçen enerji değerlerinde artış olduğunu ortaya koymuştur; bu da kemik dayanıklılığının arttığını göstermektedir. Ayrıca plazma kalsiyum düzeylerinde artış, bağırsak fosfor konsantrasyonlarında azalma ve tibia kül içeriğinde yükselme gözlenmiştir. Bu bulgular, ultrasonla muamele edilmiş alıç sirkesinin biyomekanik dayanıklılığı ve mineral metabolizmasını iyileştirerek kemik sağlığını destekleyebileceğini, dolayısıyla genel kemik kalitesine katkıda bulunabileceğini düşündürmektedir. Bulgular ayrıca alıç sirkesinin yüksek antioksidan ve fenolik içeriğine bağlı olarak kemik sağlığı üzerindeki faydalı etkilerini vurgulamaktadır. Ultrasonla muamele edilmiş ve edilmemiş alıç sirkesinin karşılaştırıldığı ilk çalışma olması nedeniyle, elde edilen sonuçlar biyoaktif bileşiklerin kemik biyomekaniğini geliştirmedeki rolünü ortaya koymakta ve alıç sirkesinin iskelet sağlığı için işlevsel bir gıda olarak potansiyeline işaret etmektedir.

Ethical Statement

Mevcut çalışma protokolü Tekirdağ Namık Kemal Üniversitesi Hayvan Deneyleri Yerel Etik Kurulu tarafından onaylanmıştır (Onay Numarası: T2022-979).

Supporting Institution

Tekirdağ Namık Kemal Üniversitesi

Project Number

NKUBAP.10.GA.21.346

References

  • Licini C, Vitale-Brovarone C, Mattioli-Belmonte M. Collagen and noncollagenous proteins molecular crosstalk in the pathophysiology of osteoporosis. Cytokine Growth Factor Rev. 2019;49:59-69.
  • Boskey AL, Coleman R. Aging and bone. J Dent Res. 2010;89(12):1333-1348.
  • Cashman KD. Diet, nutrition, and bone health. J Nutr. 2007;137(11 Suppl):2507S-2512S. doi:10.1093/jn/137.11.2507S.
  • Ahn CB, Je JY. Bone health-promoting bioactive peptides. J Food Biochem. 2019;43(1):e12529.
  • Rizzoli R, Biver E, Brennan-Speranza TC. Nutritional intake and bone health. Lancet Diabetes Endocrinol. 2021;9(9):606-621.
  • Faienza MF, Giardinelli S, Annicchiarico A, Chiarito M, Barile B, Corbo F, Brunetti G. Nutraceuticals and functional foods: A comprehensive review of their role in bone health. Int J Mol Sci. 2024;25(11):5873.
  • Robinson MM, Zhang X. The World Medicines Situation Traditional Medicines, Global Situation, Issues, and Challenges. 3rd ed. World Health Organization (WHO); 2011: p1-14.
  • Hosseinimehr SJ, Azadbakht M, Abadi AJ. Protective effect of hawthorn extract against genotoxicity induced by cyclophosphamide in mouse bone marrow cells. Environ Toxicol Pharmacol. 2008;25(1):51-56.
  • Hatipoğlu M, Sağlam M, Köseoğlu S, Köksal E, Keleş A, Esen H. The effectiveness of Crataegus orientalis M. Bieber. (Hawthorn) extract administration in preventing alveolar bone loss in rats with experimental periodontitis. PLoS One. 2015;10(6):e0128134.
  • Hosseinimehr SJ, Azadbakht M, Mousavi SM, Mahmoudzadeh A, Akhlaghpoor S. Radioprotective effects of hawthorn fruit extract against gamma irradiation in mouse bone marrow cells. J Radiat Res. 2007;48(1):63-68.
  • Zhang J, Chai X, Zhao F, Hou G, Meng Q. Food applications and potential health benefits of hawthorn. Foods. 2022;11(18):2861.
  • Dalli E, Milara J, Cortijo J, Morcillo EJ, Cosín-Sales J, Sotillo JF. Hawthorn extract inhibits human isolated neutrophil functions. Pharmacol Res. 2008;57(6):445-450.
  • Halver J, Wenzel K, Sendker J, Carrillo García C, Erdelmeier CAJ, Willems E, Mercola M, Symma N, Könemann S, Koch E, Hensel A, Schade D. Crataegus extract WS®1442 stimulates cardiomyogenesis and angiogenesis from stem cells: A possible new pharmacology for hawthorn? Front Pharmacol. 2019;10:1357.
  • European Medicines Agency. Hawthorn leaf and flower-Crataegus spp., folium cum flore. http://www.ema.europa.eu/ema/index.jspcurl=pages/medicines/herbal/medicines/herbal_med_000061.jsp&mid=WC0b01ac058001fa1d. Published May 31, 2016. Accessed January 21, 2025.
  • Balthazar CF, Santillo A, Guimarães JT, Bevilacqua A, Corbo MR, Caroprese M, Marino R, Esmerino EA, Silva MC, Raices RS, Freitas MQ, Cruz AG, Albenzio M. Ultrasound processing of fresh and frozen semi-skimmed sheep milk and its effects on microbiological and physicochemical quality. Ultrason Sonochem. 2019;51:241-248.
  • Villamiel M, De Jong P. Influence of high-intensity ultrasound and heat treatment in continuous flow on fat, proteins, and native enzymes of milk. J Agric Food Chem. 2000;48(2):472-478.
  • Ranjha MMAN, Irfan S, Lorenzo JM, Shafique B, Kanwal R, Pateiro M et al. Sonication, a potential technique for extraction of phytoconstituents: A Systematic Review. Processes, 2021; 9(8): 1406.
  • Aadil RM, Zeng XA, Han Z, Sun DW. Effects of ultrasound treatments on quality of grapefruit juice. Food Chem. 2013;141(3):3201-3206.
  • Ahmad T, Butt MZ, Aadil RM, Inamur-Raheem MA, Bekhit AE, Guimarães JT, Balthazar CF, Rocha RS, Esmerino EA, Freitas MQ, Silva MC, Sameen A, Cruz AG. Impact of nonthermal processing on different milk enzymes. Int J Dairy Technol. 2019;72(4):481-495.
  • Estivi L, Brandolini A, Condezo-Hoyos L, Hidalgo A. Impact of low-frequency ultrasound technology on physical, chemical and technological properties of cereals and pseudocereals. Ultrason Sonochem. 2022;86:106044.
  • Peña-González E, Alarcón-Rojo AD, Rentería A, García I, Santellano E, Quintero A, Luna L. Quality and sensory profile of ultrasound-treated beef. Ital J Food Sci. 2017;29(3):463-475.
  • Xu DP, Zheng J, Zhou Y, Li Y, Li S, Li HB. Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: Optimization and comparison with conventional methods. Food Chem. 2017;217:552-559. Yıkmış S, Aksu F, Sandıkçı Altunatmaz S, Çöl BG. Ultrasound processing of vinegar: Modelling the impact on bioactives and other quality factors. Foods. 2021;10(8):1703.
  • Padureanu C, Badarau CL, Maier A, Padureanu V, Lupu MI, Canja CM, Branescu GR, Bujor OC, Matei F, Poiana MA, Alexa E, Nedelcu A. Ultrasound treatment influence on antioxidant properties of blueberry vinegar. Fermentation. 2023;9(7):600.
  • Öğüt, S, Türkol M., Yıkmış S., Bozgeyik E., Abdi G., Kocyigit E., Aadil RM., Seyidoglu N., Karakçı D., Tokatlı N. 2025. Ultrasound-assisted enhancement of bioactive compounds in hawthorn vinegar: A functional approach to anticancer and antidiabetic effects. Ultrasonics Sonochemistry 114 (2025) 107245.
  • Ho CW, Lazim AM, Fazry S, Zaki UKHH, Lim SJ. Varieties, production, composition and health benefits of vinegars: A review. Food Chem. 2017;221:1621-1630.
  • Yıkmış S. Optimization of Uruset apple vinegar production using response surface methodology for the enhanced extraction of bioactive substances. Foods. 2019;8(3):107.
  • Singleton V, Rossi A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagent. Am J Enol Vitic. 1965;16:144-158.
  • Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999;64(4):555-559.
  • AOAC (Association of Official Analytical Chemists). Official Methods of Analysis. 21st ed. AOAC International; 2000.
  • Apak R, Güçlü K, Özyürek M, Karademir SE. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem. 2004;52(26):7970-7981.
  • Kumaran A, Karunakaran RJ. Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chem. 2006;97(1):109-114.
  • Rai S, Wahile A, Mukherjee K, Saha BP, Mukherjee PK Antioxidant activity of Nelumbo nucifera (sacred lotus) seeds. J Ethnopharmacol. 2006;104(3):322-327.
  • Karakçı D, Bakır B, Seyidoglu N, Yıkmış S. Ultrasound-treated and thermal-pasteurized hawthorn vinegar: Antioxidant and lipid profiles in rats. Nutrients. 2023;15(18):3933.
  • Herrera-Ponce AL, Salmeron-Ochoa I, Rodriguez-Figueroa JC, Santellano-Estrada E, Garcia-Galicia IA, Vargas-Bello-Pérez E, Alarcon-Rojo AD. Effects of ultrasound versus pasteurization on whey-oat beverage processing: Quality and antioxidative properties. Processes. 2022;10(8):1572.
  • Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. 5th ed. Oxford University Press; 2015:p35-60.
  • Savasky BM, Mascotti DP, Patel N, Rodriguez-Collazo E. Nutritional and pharmacological effects on oxidative stress in soft tissue and bone remodeling. J Nutr Metab. 2018;2018:4183407.
  • Ohyama Y, Ito J, Kitano VJ, Shimada J, Hakeda Y. The polymethoxy flavonoid sudachitin suppresses inflammatory bone destruction by directly inhibiting osteoclastogenesis due to reduced ROS production and MAPK activation in osteoclast precursors. PLoS One. 2018;13(1):e0191192.
  • Domazetovic V, Marcucci G, Iantomasi T, Brandi ML, Vincenzini MT. Oxidative stress in bone remodeling: role of antioxidants. Clin Cases Miner Bone Metab. 2017;14(2):209-216
  • Marcucci G, Domazetovic V, Nediani C, Ruzzolini J, Favre C, Brandi ML. Oxidative Stress and Natural Antioxidants in Osteoporosis: Novel Preventive and Therapeutic Approaches. Antioxidants. 2023;12(2):373.
  • Nicolin V, De Tommasi N, Nori SL, Costantinides F, Berton F, Di Lenarda R. Modulatory Effects of Plant Polyphenols on Bone Remodeling: A Prospective View From the Bench to Bedside. Front Endocrinol. 2019;10:494.
  • Sheweita SA, Khoshhal KI. Calcium metabolism and oxidative stress in bone fractures: role of antioxidants. Review Curr Drug Metab. 2007;8(5):519-25.
  • Valentino A, Di Cristo F Bosetti M, Amaghnouje A, Bousta D, Conte R, Calarco A. Bioactivity and Delivery Strategies of Phytochemical Compounds in Bone Tissue Regeneration. Appl Sci. 2021;11(11):5122.
  • Corey RM, Cannada LK. Nutritional supplementation of fracture healing. In: Hoppenfeld JD, ed. Treatment and Rehabilitation of Fractures. 2nd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2021.
  • Mottaghi P, Nasri P. Antioxidant and bone; protect your future: A brief review. Iran J Public Health. 2021;50(9):1783-1788.
  • Chisari E, Shivappa N, Vyas S. Polyphenol-rich foods and osteoporosis. Curr Pharm Des. 2019;25(22):2459-2466.
  • Bello A, Hester P, Gerard P, Zhai W, Peebles E. Effects of commercial in ovo injection of 25-hydroxycholecalciferol on bone development and mineralization in male and female broilers. Poult Sci. 2014;93(11):2734-2739.
  • Jerez-Bogota K, Sánchez C, Ibagon J, Jlali M, Cozannet P, Preynat A, Woyengo T. Growth performance and nutrient digestibility of growing and finishing pigs fed multienzyme-supplemented low-energy and -amino acid diets. Transl Anim Sci. 2020;4(2):602-615.
  • Ominsky M, Li X, Asuncion F, Barrero M, Warmington K, Dwyer D, Stolina M, Geng Z, Grisanti M, Tan HL, Corbin T, McCabe J, Simonet WS, Ke HZ, Kostenuik P. RANKL inhibition with osteoprotegerin increases bone strength by improving cortical and trabecular bone architecture in ovariectomized rats. J Bone Miner Res. 2008;23(5):672-682.
  • Rocabado J, Kaku M, Nozaki K, Ida T, Kitami M, Aoyagi Y, Uoshima K. A multi-factorial analysis of bone morphology and fracture strength of rat femur in response to ovariectomy. J Orthop Surg Res. 2018;13(1):318.
  • Minami M, Ikoma K, Onishi O, Horii M, Itoh K, Takahashi K. Histological assessment of cortical bone changes in diabetic rats. J Orthop Surg Res. 2022;17:568.
There are 50 citations in total.

Details

Primary Language English
Subjects Veterinary Sciences (Other)
Journal Section Research Article
Authors

Bayram Süzer 0000-0002-2687-1221

Murat Horasan 0000-0002-7870-1486

Nilay Seyidoğlu 0000-0002-2817-5131

Deniz Karakcı 0000-0002-1884-1874

Project Number NKUBAP.10.GA.21.346
Submission Date September 29, 2025
Acceptance Date November 20, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 44 Issue: 2

Cite

APA Süzer, B., Horasan, M., Seyidoğlu, N., Karakcı, D. (2025). Antioxidant properties of hawthorn vinegar and its potential role in bone health. Journal of Research in Veterinary Medicine, 44(2), 95-103. https://doi.org/10.30782/jrvm.1793251
AMA Süzer B, Horasan M, Seyidoğlu N, Karakcı D. Antioxidant properties of hawthorn vinegar and its potential role in bone health. J Res Vet Med. December 2025;44(2):95-103. doi:10.30782/jrvm.1793251
Chicago Süzer, Bayram, Murat Horasan, Nilay Seyidoğlu, and Deniz Karakcı. “Antioxidant Properties of Hawthorn Vinegar and Its Potential Role in Bone Health”. Journal of Research in Veterinary Medicine 44, no. 2 (December 2025): 95-103. https://doi.org/10.30782/jrvm.1793251.
EndNote Süzer B, Horasan M, Seyidoğlu N, Karakcı D (December 1, 2025) Antioxidant properties of hawthorn vinegar and its potential role in bone health. Journal of Research in Veterinary Medicine 44 2 95–103.
IEEE B. Süzer, M. Horasan, N. Seyidoğlu, and D. Karakcı, “Antioxidant properties of hawthorn vinegar and its potential role in bone health”, J Res Vet Med, vol. 44, no. 2, pp. 95–103, 2025, doi: 10.30782/jrvm.1793251.
ISNAD Süzer, Bayram et al. “Antioxidant Properties of Hawthorn Vinegar and Its Potential Role in Bone Health”. Journal of Research in Veterinary Medicine 44/2 (December2025), 95-103. https://doi.org/10.30782/jrvm.1793251.
JAMA Süzer B, Horasan M, Seyidoğlu N, Karakcı D. Antioxidant properties of hawthorn vinegar and its potential role in bone health. J Res Vet Med. 2025;44:95–103.
MLA Süzer, Bayram et al. “Antioxidant Properties of Hawthorn Vinegar and Its Potential Role in Bone Health”. Journal of Research in Veterinary Medicine, vol. 44, no. 2, 2025, pp. 95-103, doi:10.30782/jrvm.1793251.
Vancouver Süzer B, Horasan M, Seyidoğlu N, Karakcı D. Antioxidant properties of hawthorn vinegar and its potential role in bone health. J Res Vet Med. 2025;44(2):95-103.