Research Article
BibTex RIS Cite

Soft Union-Gamma Product of Groups

Year 2025, Volume: 3 Issue: 2, 58 - 72, 31.12.2025
https://doi.org/10.63063/jsat.1724734

Abstract

Soft set theory constitutes a mathematically rigorous and algebraically expressive framework for modeling systems characterized by uncertainty, vagueness, and parameter-dependent variability. At the heart of this formalism lies a comprehensive repertoire of algebraic operations and binary product constructions that collectively furnish the universe of soft sets with a rich and finely articulated internal algebraic topology. Within this algebraic landscape, we introduce and formally investigate a novel binary operation, termed the soft union–gamma product, defined over soft sets whose parameter domains are endowed with group-theoretic structure. The operation is rigorously constructed within an axiomatic framework that ensures compatibility with generalized notions of soft subsethood and soft equality. A systematic algebraic analysis is undertaken to establish the operation’s fundamental properties, including closure, associativity, commutativity, idempotency, and distributivity over other soft set operations, as well as its behavior in relation to identity and absorbing elements. Moreover, the product’s interaction with both the null and absolute soft sets is rigorously characterized. Two principal contributions emerge from this investigation. First, the integration of the soft union–gamma product enhances the internal operational harmony of soft set theory by embedding it within a formally consistent, axiomatically governed algebraic environment. Second, the operation lays a conceptual and structural foundation for the development of a generalized soft group theory, wherein soft sets indexed by group-structured parameter domains emulate the axiomatic behavior of classical group-theoretic systems through suitably defined soft operations. This study constitutes a substantive advancement in the algebraic consolidation and theoretical generalization of soft set theory.

References

  • L. A. Zadeh, “Fuzzy Sets,” Inf. Control., 8(3), 338-353, 1965.
  • D. Molodtsov, “Soft Set Theory,” Comput. Math. Appl., 37(1), 19-31, 1999.
  • P. K. Maji, R. Biswas, and A. R. Roy, “Soft Set Theory,” Comput. Math. Appl, 45(1), 555-562, 2003.
  • D. Pei and D. Miao, “From soft sets to information systems,” in Proceedings of Granular Computing., X. Hu, Q. Liu, A. Skowron, T. Y. Lin, R. R. Yager, and B. Zhang, Eds., vol. 2, pp. 617–621, IEEE.
  • M. I. Ali, F. Feng, X. Liu, W. K. Min, and M. Shabir, “On Some New Operations in Soft Set Theory,” Comput. Math. Appl., 57(9) 1547-1553, 2009.
  • C. F. Yang, “A Note on: Soft Set Theory,” Comput. Math. Appl., 56(7), 1899-1900, 2008.
  • F. Feng, Y. M. Li, B. Davvaz, and M. I. Ali, “Soft Sets Combined with Fuzzy Sets and Rough Sets: A Tentative Approach,” Soft Comput., 14, 899-911, 2010.
  • Y. Jiang, Y. Tang, Q. Chen, J. Wang, and S. Tang, “Extending Soft Sets with Description Logics,” Comput. Math. Appl., 59(6), 2087-2096, 2010.
  • M. I. Ali, M. Shabir, and M. Naz, “Algebraic Structures of Soft Sets Associated with New Operations,” Comput. Math. Appl., 61(9), 2647-2654, 2011.
  • I .J. Neog, and D. K. Sut, “A New Approach to the Theory of Soft Set,” Int. J. Comput. Appl., 32(2), 1-6, 2011.
  • L. Fu, “Notes on Soft Set Operations,” ARPN J. Syst. Softw., 1, 205-208, 2011.
  • X. Ge, and S. Yang, “Investigations on Some Operations of Soft Sets,” World Acad. Sci., Eng. Technol., 75, 1113-1116, 2011.
  • D. Singh, and I. A. Onyeozili, “Notes on Soft Matrices Operations,” ARPN J. Sci. Technol., 2(9), 861-869, 2012.
  • D. Singh, and I. A. Onyeozili, “On Some New Properties on Soft Set Operations,” Int. J. Comput. Appl., 59(4), 39-44, 2012.
  • D. Singh, and I. A. Onyeozili, “Some Results On Distributive and Absorption Properties on Soft Operations,” IOSR J. Math., 4(2), 18-30, 2012.
  • D. Singh, and I. A. Onyeozili, “Some Conceptual Misunderstanding of the Fundamentals of Soft Set Theory,” ARPN J. Syst. Softw., 2(9), 251-254, 2012.
  • P. Zhu, and Q. Wen, “Operations on Soft Sets Revisited,” J. Appl. Math., Article ID 105752, 7 pages, 2013.
  • I. A. Onyeozili, and T. M. Gwary, “A Study of the Fundamentals of Soft Set Theory,” Int. J. Sci. Technol. Res., 3(4), 132-143, 2014.
  • J. Sen, “On Algebraic Structure of Soft Sets,” Ann. Fuzzy Math. Inform., 7(6), 1013-1020, 2014.
  • Ö. F. Eren and H. Çalışıcı, “On some operations of soft sets,” presented at the Fourth Int. Conf. Computational Mathematics and Engineering Sciences, 2019.
  • N. S. Stojanovic, “A New Operation on Soft Sets: Extended Symmetric Difference of Soft Sets,” Mil. Tech. Cour., 69(4), 779-791, 2021.
  • A. Sezgin, F. Aybek, and A. O. Atagün, “A New Soft Set Operation: Complementary Soft Binary Piecewise Intersection Operation,” Black Sea J. Eng. Sci., 6(4), 330-346, 2023.
  • A. Sezgin, F. Aybek, and N. B. Güngör, “A New Soft Set Operation: Complementary Soft Binary Piecewise Union Operation,” Acta Inform. Malaysia, 7(1), 38-53, 2023.
  • A. Sezgin, and K. Dagtoros, “Complementary Soft Binary Piecewise Symmetric Difference Operation: A Novel Soft Set Operation,” Sci. J. Mehmet Akif Ersoy Univ., 6(2), 31-45, 2023.
  • A. Sezgin, and A. M. Demirci, “A New Soft Set Operation: Complementary Soft Binary Piecewise Star Operation,” Ikonion J. Math., 5(2), 24-52, 2023.
  • A. Sezgin, and H. Çalışıcı, “A Comprehensive Study on Soft Binary Piecewise Difference Operation,” Eskişehir Tek. Univ. J. Sci. Technol. B – Theor. Sci., 12(1), 1-23, 2024.
  • A. Sezgin, and E. Yavuz, “A New Soft Set Operation: Soft Binary Piecewise Symmetric Difference Operation,” Necmettin Erbakan Univ. J. Sci. Eng., 5(2), 150-168, 2023.
  • A. Sezgin, and E. Yavuz, “A New Soft Set Operation: Complementary Soft Binary Piecewise Lambda Operation,” Sinop Univ. J. Nat. Sci., 8(2), 101-133, 2023.
  • A. Sezgin, and E. Yavuz, “Soft Binary Piecewise Plus Operation: A New Type of Operation for Soft Sets,” Uncertain. Discour. Appl., 1(1), 79-100, 2024.
  • A. Sezgin, and N. Çağman, “A New Soft Set Operation: Complementary Soft Binary Piecewise Difference Operation,” Osm. Korkut Ata Univ. J. Inst. Sci. Technol, 7(1), 1-37, 2024.
  • A. Sezgin, and N. Çağman, “An Extensive Study on Restricted and Extended Symmetric Difference Operations of Soft Sets,” Util. Math. in press, 2025.
  • A. Sezgin, and M. Sarıalioğlu, “A New Soft Set Operation: Complementary Soft Binary Piecewise Theta Operation,” J. Kadirli Fac. Appl. Sci., 4(2), 325-357, 2024.
  • A. Sezgin, and M. Sarıalioğlu, “Complementary Extended Gamma Operation: A New Soft Set Operation,” Nat. Appl. Sci. J., 7(1),15-44, 2024.
  • A. Sezgin, and E. Şenyiğit, “A New Product for Soft Sets with Its Decision-Making: Soft Star-Product,” Big Data Comput., 5(1), 52-73, 2025.
  • K. Qin, and Z. Hong, “On Soft Equality,” J. Comput. Appl. Math., 234(5), 1347-1355, 2010.
  • Y. B. Jun, and X. Yang, “A Note on The Paper Combination of Interval-Valued Fuzzy Set and Soft Set,” Comput. Math. Appl., 61(5), 1468-1470, 2011.
  • X. Liu, F. Feng, and Y. B. Jun, “A Note on Generalized Soft Equal Relations,” Comput. Math. Appl, 64(4), 572-578, 2012.
  • F. Feng, and Y. Li, “Soft Subsets and Soft Product Operations,” Inf. Sci., 232(20), 44-57, 2013.
  • M. Abbas, B. Ali, and S. Romaguera, “On Generalized Soft Equality and Soft Lattice Structure,” Filomat, 28(6), 1191-1203, 2014.
  • M. Abbas, M. I. Ali, and S. Romaguera, “Generalized Operations in Soft Set Theory Via Relaxed Conditions on Parameters,” Filomat, 31(19), 5955-5964, 2017.
  • T. M. Al-Shami, “Investigation and Corrigendum to Some Results Related to G-soft Equality and GF -Soft Equality Relations,” Filomat, 33(11), 3375-3383, 2019.
  • T. Alshami, and M. El-Shafei, “T-Soft Equality Relation,” Turk. J. Math, 44(4), 1427-1441, 2020.
  • N. Çağman, and S. Enginoğlu, “Soft Set Theory and Uni-Int Decision Making,” Eur. J. Oper. Res., 207(2), 848-855, 2010.
  • A. S. Sezer, “A New View to Ring Theory Via Soft Union Rings,” Knowl.-Based Syst., 36, 300–314, 2012.
  • A. Sezgin, “A New Approach to Semigroup Theory I: Soft Union Semigroups, Ideals and Bi-Ideals,” Algebra Lett., 2016, 3, 1-46, 2016.
  • E. Muştuoğlu, A. Sezgin, and Z. K. Türk, “Some Characterizations on Soft Uni-Groups and Normal Soft Uni-Groups,” Int. J. Comput. Appl., 155(10), 1-8, 2016.
  • K. Kaygisiz, “On Soft Int-Groups,” Ann. Fuzzy Math. Inform., 4(2), 363–375, 2012.
  • A. S. Sezer, N. Çağman, A. O. Atagün, M. I. Ali, and E. Türkmen, “Soft Intersection Semigroups, Ideals and Bi-Ideals; A New Application on Semigroup Theory I,” Filomat, 29(5), 917-946, 2015.
  • A. Sezgin, N. Çağman, and A. O. Atagün, “A Completely New View to Soft Intersection Rings Via Soft Uni-Int Product,” Appl. Soft Comput., 54, 366-392, 2017.
  • A. Sezgin, İ. Durak, and Z. Ay, “Some New Classifications of Soft Subsets and Soft Equalities with Soft Symmetric Difference-Difference Product of Groups,” Amesia, 6(1), 16-32, 2025.
  • A. Sezgin, and İ. Durak, “Soft Intersection-Lambda Product of Groups,” Karatekin University Journal of Science, 4(1), in press, 2025.
  • A. Sezgin, N. Çağman, A. O. Atagün, and F. Aybek, “Complemental Binary Operations of Sets and Their Application to Group Theory,” Matrix Sci. Math., 7(2), 99-106, 2023.
  • H. Aktas, and N. Çağman, “Soft Sets and Soft Groups,” Inf. Sci., 177(13), 2726-2735, 2007.
  • J. C. R. Alcantud, and A. Z. Khameneh, G. Santos-García, and M. Akram, “A Systematic Literature Review of Soft Set Theory,” Neural Comput. Appl., 36, 8951–8975.
  • M. I. Ali, M. Mahmood, M. U. Rehman, and M. F. Aslam, “On Lattice Ordered Soft Sets,” Appl. Soft Comput., 36, 499-505, 2015.
  • B. Ali, N. Saleem, N. Sundus, S. Khaleeq, M. Saeed, and R. George, “A Contribution to the Theory of Soft Sets Via Generalized Relaxed Operations,” Math., 10(15), 26-36, 2022.
  • A. O. Atagün, H. Kamacı, İ. Taştekin, and A. Sezgin, “P-Properties in Near-Rings,” J. Math. Fund. Sci., 51(2), 152-167, 2019.
  • A. O. Atagün, and A. Sezgin, “Soft Subnear-Rings, Soft Ideals and Soft N-Subgroups of Near-Rings,” Math. Sci. Lett., 7(1), 37-42, 2015.
  • A. O. Atagün, and A. Sezgin, “Int-Soft Substructures of Groups and Semirings with Applications,” Appl. Math. Inf. Sci., 11(1), 105-113, 2017.
  • A. O. Atagün, and A. Sezgin, “A New View to Near-Ring Theory: Soft Near-Rings,” South East Asian J. Math. Math. Sci., 14(3), 1-14, 2018.
  • A. O. Atagün, and A. Sezgin, “More on Prime, Maximal and Principal Soft Ideals of Soft Rings,” New Math. Nat. Comput., 18(1), 195-207, 2022.
  • F. Feng, Y. B. Jun, and X. Zhao, “Soft Semirings,” Comput. Math. Appl., 56(10), 2621-2628, 2008.
  • M., Gulistan, M. Shahzad, “On Soft KU-Algebras,” J. Algebra Number Theory: Adv. Appl., 11(1), 1-20, 2014.
  • M. Gulistan, F. Feng, M. Khan, and A. Sezgin, “Characterizations of Right Weakly Regular Semigroups in Terms of Generalized Cubic Soft Sets,” Math., No: 6, 293, 2018.
  • C. Jana, M. Pal, F. Karaaslan, and A. Sezgin, “(α, β)-Soft Intersectional Rings and Ideals with Their Applications,” New Math. Nat. Compu.t, 15(2), 333–350, 2019.
  • F. Karaaslan, “Some Properties of AG*-Groupoids and AG-Bands Under SI-Product Operation,” J. Intell. Fuzzy Syst., 36(1), 231-239, 2019.
  • A. Khan, I. Izhar, & A. Sezgin, “Characterizations of Abel Grassmann's Groupoids by the Properties of Their Double-Framed Soft Ideals,” Int. J. Anal. Appl., 15(1), 62-74, 2017.
  • T. Mahmood, A. Waqas, and M. A. Rana, “Soft Intersectional Ideals in Ternary Semiring,” Sci. Int, 27(5), 3929-3934, 2015.
  • T. Mahmood, Z. U. Rehman, and A. Sezgin, “Lattice Ordered Soft Near Rings,” Korean J. Math, 26(3), 503-517, 2018.
  • T. Manikantan, P. Ramasany, and A. Sezgin, “Soft Quasi-Ideals of Soft Near-Rings,” Sigma J. Eng. Nat. Sci, 41(3), 565-574, 2023.
  • S. Memiş, “Another View on Picture Fuzzy Soft Sets and Their Product Operations with Soft Decision-Making,” J. New Theory, 38, 1-13, 2022.
  • Ş. Özlü, and A. Sezgin, “Soft Covered Ideals in Semigroups,” Acta Univ. Sapientiae Math., 12(2), 317-346, 2020.
  • M. Riaz, M. R. Hashmi, F. Karaaslan, A. Sezgin, M. M. A. A. Shamiri, and M. M. Khalaf, “Emerging Trends in Social Networking Systems and Generation Gap with Neutrosophic Crisp Soft Mapping,” CMES Comput. Model. Eng. Sci., 136(2), 1759-1783, 2023.
  • A. S. Sezer, and A. O. Atagün, “A New Kind of Vector Space: Soft Vector Space,” Southeast Asian Bull. Math., 40(5), 753-770, 2016.
  • A. Sezer, A. O. Atagün, and N. Çağman, “N-Group SI-Action and Its Applications to N-Group Theory,” Fasc. Math., 52, 139-153, 2017.
  • A. Sezer, A. O. Atagün, and N. Çağman, “A New View to N-Group Theory: Soft N-Groups,” Fasc. Math., 51, 123-140, 2013.
  • A. S. Sezer, N. Çağman, and A. O. “Atagün, Soft Intersection Interior Ideals, Quasi-Ideals and Generalized Bi-Ideals; A New Approach to Semigroup Theory II,” J. Multiple-Valued Logic Soft Comput., 23(1-2), 161-207, 2014.
  • A. Sezgin, and A. İlgin, “Soft Intersection Almost Subsemigroups of Semigroups,” Int. J. Math. Phys., 15(1), 13-20, 2024.
  • A. Sezgin, A. O. Atagün, N. Çağman, and H. Demir, “On Near-Rings with Soft Union Ideals and Applications,” New Math. Nat. Comput., 18(2), 495-511, 2022.
  • A. Sezgin, and B. Onur, “Soft Intersection Almost Bi-Ideals of Semigroups,” Syst. Anal., 2(1), 95-105, 2024.
  • A. Sezgin, B. Onur, and A. İlgin, “Soft Intersection Almost Tri-Ideals of Semigroups,” SciNexuses, 1, 126-138, 2024.
  • A. Sezgin, and M. Orbay, “Analysis of Semigroups with Soft Intersection Ideals,” Acta Univ. Sapientiae Math., 14(2), 166-210, 2022.
  • A. Sezgin, A. Shahzad, and A. Mehmood, “A New Operation on Soft Sets: Extended Difference of Soft Sets,” J. New Theory, 27, 33-42, 2019.
  • M. Tunçay, and A. Sezgin, “Soft Union Ring and Its Applications to Ring Theory,” Int. J. Comput. Appl., 151(9), 7-13, 2016.
  • A. Ullah, F. Karaaslan, and I. Ahmad, “Soft Uni-Abel-Grassmann's Groups,” Europ. J. Pure Appl. Math., 11(2), 517-536, 2018.
  • İ. Durak, and A. Sezgin, “Soft Symmetric Intersection-Star Product of Groups,” in press, 2025.
  • M. Khan, F. Ilyas, M. Gulistan, and S. Anis, “A Study of Soft AG-Groupoids,” Ann. Fuzzy Math. Inform., 9(4), 621–638, 2015.
  • A. Sezgin, A. O. Atagün, and N. Çağman, “A Complete Study on and Product of Soft Sets,” Sigma J. Eng. Nat. Sci., 43(1), 1−14. 2025.

Grupların Esnek Birleşim-Gama Çarpımı

Year 2025, Volume: 3 Issue: 2, 58 - 72, 31.12.2025
https://doi.org/10.63063/jsat.1724734

Abstract

Esnek küme teorisi, belirsizlik, muğlaklık ve parametreye bağlı değişkenlik ile karakterize edilen sistemleri modellemeye yönelik, matematiksel açıdan titiz ve cebirsel olarak ifade gücü yüksek bir kuramsal çerçeve sunmaktadır. Bu biçimsel yapının merkezinde, esnek kümeler evrenine zengin ve ince yapılandırılmış bir iç cebirsel topoloji kazandıran kapsamlı bir cebirsel işlemler dizisi ve ikili çarpım yapıları yer almaktadır. Bu cebirsel bağlam içerisinde, parametre kümeleri grup kuramsal bir yapıya sahip olan esnek kümeler üzerinde tanımlı esnek birleşim–gama çarpımı olarak adlandırılan yeni bir ikili işlem tanıtılmakta ve biçimsel olarak araştırılmaktadır. Söz konusu işlem, esnek altkümelik ve esnek eşitlik kavramlarının genelleştirilmiş biçimleriyle uyumluluğu güvence altına alan aksiyomatik bir çerçeve içinde titizlikle inşa edilmiştir. Bu işlemin temel özelliklerini belirlemek amacıyla sistematik bir cebirsel analiz gerçekleştirilmiştir. Yapılan çözümleme kapsamında kapalılık, birleşmelilik, değişmeli olma, idempotentlik ve diğer esnek küme işlemleri üzerine dağılma gibi temel yapısal özelliklerin yanı sıra, birim ve yutan elemanlara göre davranışı da ayrıntılı biçimde ele alınmıştır. Ayrıca, işlemin boş ve evrensel esnek kümelerle olan etkileşimi de kesin biçimde tanımlanmıştır. Kuramsal bulgular, bu işlemin grup yapılandırmalı parametre kümeleri tarafından dayatılan cebirsel kısıtlamaları karşıladığını ve esnek küme uzayı üzerinde yapısal açıdan tutarlı ve iyi örgütlenmiş bir cebirsel sistem oluşturduğunu göstermektedir. Bu çalışmadan iki temel katkı öne çıkmaktadır: Birincisi, esnek birleşim–gama çarpımının teoriye dâhil edilmesi, esnek küme teorisinin içsel işlemsel uyumunu artırmakta ve onu biçimsel olarak tutarlı, aksiyomlarla yönetilen bir cebirsel ortam içerisine yerleştirmektedir. İkincisi ise, grup yapısına sahip parametre kümeleri tarafından indekslenen esnek kümelerin, uygun şekilde tanımlanmış esnek işlemler aracılığıyla klasik grup kuramı sistemlerinin aksiyomatik davranışlarını yansıttığı genelleştirilmiş bir esnek grup teorisinin kavramsal ve yapısal temelini oluşturmaktadır. Bu çalışma, esnek küme teorisinin cebirsel olarak pekiştirilmesi ve kuramsal olarak genelleştirilmesi yönünde önemli bir ilerlemeyi temsil etmektedir.

References

  • L. A. Zadeh, “Fuzzy Sets,” Inf. Control., 8(3), 338-353, 1965.
  • D. Molodtsov, “Soft Set Theory,” Comput. Math. Appl., 37(1), 19-31, 1999.
  • P. K. Maji, R. Biswas, and A. R. Roy, “Soft Set Theory,” Comput. Math. Appl, 45(1), 555-562, 2003.
  • D. Pei and D. Miao, “From soft sets to information systems,” in Proceedings of Granular Computing., X. Hu, Q. Liu, A. Skowron, T. Y. Lin, R. R. Yager, and B. Zhang, Eds., vol. 2, pp. 617–621, IEEE.
  • M. I. Ali, F. Feng, X. Liu, W. K. Min, and M. Shabir, “On Some New Operations in Soft Set Theory,” Comput. Math. Appl., 57(9) 1547-1553, 2009.
  • C. F. Yang, “A Note on: Soft Set Theory,” Comput. Math. Appl., 56(7), 1899-1900, 2008.
  • F. Feng, Y. M. Li, B. Davvaz, and M. I. Ali, “Soft Sets Combined with Fuzzy Sets and Rough Sets: A Tentative Approach,” Soft Comput., 14, 899-911, 2010.
  • Y. Jiang, Y. Tang, Q. Chen, J. Wang, and S. Tang, “Extending Soft Sets with Description Logics,” Comput. Math. Appl., 59(6), 2087-2096, 2010.
  • M. I. Ali, M. Shabir, and M. Naz, “Algebraic Structures of Soft Sets Associated with New Operations,” Comput. Math. Appl., 61(9), 2647-2654, 2011.
  • I .J. Neog, and D. K. Sut, “A New Approach to the Theory of Soft Set,” Int. J. Comput. Appl., 32(2), 1-6, 2011.
  • L. Fu, “Notes on Soft Set Operations,” ARPN J. Syst. Softw., 1, 205-208, 2011.
  • X. Ge, and S. Yang, “Investigations on Some Operations of Soft Sets,” World Acad. Sci., Eng. Technol., 75, 1113-1116, 2011.
  • D. Singh, and I. A. Onyeozili, “Notes on Soft Matrices Operations,” ARPN J. Sci. Technol., 2(9), 861-869, 2012.
  • D. Singh, and I. A. Onyeozili, “On Some New Properties on Soft Set Operations,” Int. J. Comput. Appl., 59(4), 39-44, 2012.
  • D. Singh, and I. A. Onyeozili, “Some Results On Distributive and Absorption Properties on Soft Operations,” IOSR J. Math., 4(2), 18-30, 2012.
  • D. Singh, and I. A. Onyeozili, “Some Conceptual Misunderstanding of the Fundamentals of Soft Set Theory,” ARPN J. Syst. Softw., 2(9), 251-254, 2012.
  • P. Zhu, and Q. Wen, “Operations on Soft Sets Revisited,” J. Appl. Math., Article ID 105752, 7 pages, 2013.
  • I. A. Onyeozili, and T. M. Gwary, “A Study of the Fundamentals of Soft Set Theory,” Int. J. Sci. Technol. Res., 3(4), 132-143, 2014.
  • J. Sen, “On Algebraic Structure of Soft Sets,” Ann. Fuzzy Math. Inform., 7(6), 1013-1020, 2014.
  • Ö. F. Eren and H. Çalışıcı, “On some operations of soft sets,” presented at the Fourth Int. Conf. Computational Mathematics and Engineering Sciences, 2019.
  • N. S. Stojanovic, “A New Operation on Soft Sets: Extended Symmetric Difference of Soft Sets,” Mil. Tech. Cour., 69(4), 779-791, 2021.
  • A. Sezgin, F. Aybek, and A. O. Atagün, “A New Soft Set Operation: Complementary Soft Binary Piecewise Intersection Operation,” Black Sea J. Eng. Sci., 6(4), 330-346, 2023.
  • A. Sezgin, F. Aybek, and N. B. Güngör, “A New Soft Set Operation: Complementary Soft Binary Piecewise Union Operation,” Acta Inform. Malaysia, 7(1), 38-53, 2023.
  • A. Sezgin, and K. Dagtoros, “Complementary Soft Binary Piecewise Symmetric Difference Operation: A Novel Soft Set Operation,” Sci. J. Mehmet Akif Ersoy Univ., 6(2), 31-45, 2023.
  • A. Sezgin, and A. M. Demirci, “A New Soft Set Operation: Complementary Soft Binary Piecewise Star Operation,” Ikonion J. Math., 5(2), 24-52, 2023.
  • A. Sezgin, and H. Çalışıcı, “A Comprehensive Study on Soft Binary Piecewise Difference Operation,” Eskişehir Tek. Univ. J. Sci. Technol. B – Theor. Sci., 12(1), 1-23, 2024.
  • A. Sezgin, and E. Yavuz, “A New Soft Set Operation: Soft Binary Piecewise Symmetric Difference Operation,” Necmettin Erbakan Univ. J. Sci. Eng., 5(2), 150-168, 2023.
  • A. Sezgin, and E. Yavuz, “A New Soft Set Operation: Complementary Soft Binary Piecewise Lambda Operation,” Sinop Univ. J. Nat. Sci., 8(2), 101-133, 2023.
  • A. Sezgin, and E. Yavuz, “Soft Binary Piecewise Plus Operation: A New Type of Operation for Soft Sets,” Uncertain. Discour. Appl., 1(1), 79-100, 2024.
  • A. Sezgin, and N. Çağman, “A New Soft Set Operation: Complementary Soft Binary Piecewise Difference Operation,” Osm. Korkut Ata Univ. J. Inst. Sci. Technol, 7(1), 1-37, 2024.
  • A. Sezgin, and N. Çağman, “An Extensive Study on Restricted and Extended Symmetric Difference Operations of Soft Sets,” Util. Math. in press, 2025.
  • A. Sezgin, and M. Sarıalioğlu, “A New Soft Set Operation: Complementary Soft Binary Piecewise Theta Operation,” J. Kadirli Fac. Appl. Sci., 4(2), 325-357, 2024.
  • A. Sezgin, and M. Sarıalioğlu, “Complementary Extended Gamma Operation: A New Soft Set Operation,” Nat. Appl. Sci. J., 7(1),15-44, 2024.
  • A. Sezgin, and E. Şenyiğit, “A New Product for Soft Sets with Its Decision-Making: Soft Star-Product,” Big Data Comput., 5(1), 52-73, 2025.
  • K. Qin, and Z. Hong, “On Soft Equality,” J. Comput. Appl. Math., 234(5), 1347-1355, 2010.
  • Y. B. Jun, and X. Yang, “A Note on The Paper Combination of Interval-Valued Fuzzy Set and Soft Set,” Comput. Math. Appl., 61(5), 1468-1470, 2011.
  • X. Liu, F. Feng, and Y. B. Jun, “A Note on Generalized Soft Equal Relations,” Comput. Math. Appl, 64(4), 572-578, 2012.
  • F. Feng, and Y. Li, “Soft Subsets and Soft Product Operations,” Inf. Sci., 232(20), 44-57, 2013.
  • M. Abbas, B. Ali, and S. Romaguera, “On Generalized Soft Equality and Soft Lattice Structure,” Filomat, 28(6), 1191-1203, 2014.
  • M. Abbas, M. I. Ali, and S. Romaguera, “Generalized Operations in Soft Set Theory Via Relaxed Conditions on Parameters,” Filomat, 31(19), 5955-5964, 2017.
  • T. M. Al-Shami, “Investigation and Corrigendum to Some Results Related to G-soft Equality and GF -Soft Equality Relations,” Filomat, 33(11), 3375-3383, 2019.
  • T. Alshami, and M. El-Shafei, “T-Soft Equality Relation,” Turk. J. Math, 44(4), 1427-1441, 2020.
  • N. Çağman, and S. Enginoğlu, “Soft Set Theory and Uni-Int Decision Making,” Eur. J. Oper. Res., 207(2), 848-855, 2010.
  • A. S. Sezer, “A New View to Ring Theory Via Soft Union Rings,” Knowl.-Based Syst., 36, 300–314, 2012.
  • A. Sezgin, “A New Approach to Semigroup Theory I: Soft Union Semigroups, Ideals and Bi-Ideals,” Algebra Lett., 2016, 3, 1-46, 2016.
  • E. Muştuoğlu, A. Sezgin, and Z. K. Türk, “Some Characterizations on Soft Uni-Groups and Normal Soft Uni-Groups,” Int. J. Comput. Appl., 155(10), 1-8, 2016.
  • K. Kaygisiz, “On Soft Int-Groups,” Ann. Fuzzy Math. Inform., 4(2), 363–375, 2012.
  • A. S. Sezer, N. Çağman, A. O. Atagün, M. I. Ali, and E. Türkmen, “Soft Intersection Semigroups, Ideals and Bi-Ideals; A New Application on Semigroup Theory I,” Filomat, 29(5), 917-946, 2015.
  • A. Sezgin, N. Çağman, and A. O. Atagün, “A Completely New View to Soft Intersection Rings Via Soft Uni-Int Product,” Appl. Soft Comput., 54, 366-392, 2017.
  • A. Sezgin, İ. Durak, and Z. Ay, “Some New Classifications of Soft Subsets and Soft Equalities with Soft Symmetric Difference-Difference Product of Groups,” Amesia, 6(1), 16-32, 2025.
  • A. Sezgin, and İ. Durak, “Soft Intersection-Lambda Product of Groups,” Karatekin University Journal of Science, 4(1), in press, 2025.
  • A. Sezgin, N. Çağman, A. O. Atagün, and F. Aybek, “Complemental Binary Operations of Sets and Their Application to Group Theory,” Matrix Sci. Math., 7(2), 99-106, 2023.
  • H. Aktas, and N. Çağman, “Soft Sets and Soft Groups,” Inf. Sci., 177(13), 2726-2735, 2007.
  • J. C. R. Alcantud, and A. Z. Khameneh, G. Santos-García, and M. Akram, “A Systematic Literature Review of Soft Set Theory,” Neural Comput. Appl., 36, 8951–8975.
  • M. I. Ali, M. Mahmood, M. U. Rehman, and M. F. Aslam, “On Lattice Ordered Soft Sets,” Appl. Soft Comput., 36, 499-505, 2015.
  • B. Ali, N. Saleem, N. Sundus, S. Khaleeq, M. Saeed, and R. George, “A Contribution to the Theory of Soft Sets Via Generalized Relaxed Operations,” Math., 10(15), 26-36, 2022.
  • A. O. Atagün, H. Kamacı, İ. Taştekin, and A. Sezgin, “P-Properties in Near-Rings,” J. Math. Fund. Sci., 51(2), 152-167, 2019.
  • A. O. Atagün, and A. Sezgin, “Soft Subnear-Rings, Soft Ideals and Soft N-Subgroups of Near-Rings,” Math. Sci. Lett., 7(1), 37-42, 2015.
  • A. O. Atagün, and A. Sezgin, “Int-Soft Substructures of Groups and Semirings with Applications,” Appl. Math. Inf. Sci., 11(1), 105-113, 2017.
  • A. O. Atagün, and A. Sezgin, “A New View to Near-Ring Theory: Soft Near-Rings,” South East Asian J. Math. Math. Sci., 14(3), 1-14, 2018.
  • A. O. Atagün, and A. Sezgin, “More on Prime, Maximal and Principal Soft Ideals of Soft Rings,” New Math. Nat. Comput., 18(1), 195-207, 2022.
  • F. Feng, Y. B. Jun, and X. Zhao, “Soft Semirings,” Comput. Math. Appl., 56(10), 2621-2628, 2008.
  • M., Gulistan, M. Shahzad, “On Soft KU-Algebras,” J. Algebra Number Theory: Adv. Appl., 11(1), 1-20, 2014.
  • M. Gulistan, F. Feng, M. Khan, and A. Sezgin, “Characterizations of Right Weakly Regular Semigroups in Terms of Generalized Cubic Soft Sets,” Math., No: 6, 293, 2018.
  • C. Jana, M. Pal, F. Karaaslan, and A. Sezgin, “(α, β)-Soft Intersectional Rings and Ideals with Their Applications,” New Math. Nat. Compu.t, 15(2), 333–350, 2019.
  • F. Karaaslan, “Some Properties of AG*-Groupoids and AG-Bands Under SI-Product Operation,” J. Intell. Fuzzy Syst., 36(1), 231-239, 2019.
  • A. Khan, I. Izhar, & A. Sezgin, “Characterizations of Abel Grassmann's Groupoids by the Properties of Their Double-Framed Soft Ideals,” Int. J. Anal. Appl., 15(1), 62-74, 2017.
  • T. Mahmood, A. Waqas, and M. A. Rana, “Soft Intersectional Ideals in Ternary Semiring,” Sci. Int, 27(5), 3929-3934, 2015.
  • T. Mahmood, Z. U. Rehman, and A. Sezgin, “Lattice Ordered Soft Near Rings,” Korean J. Math, 26(3), 503-517, 2018.
  • T. Manikantan, P. Ramasany, and A. Sezgin, “Soft Quasi-Ideals of Soft Near-Rings,” Sigma J. Eng. Nat. Sci, 41(3), 565-574, 2023.
  • S. Memiş, “Another View on Picture Fuzzy Soft Sets and Their Product Operations with Soft Decision-Making,” J. New Theory, 38, 1-13, 2022.
  • Ş. Özlü, and A. Sezgin, “Soft Covered Ideals in Semigroups,” Acta Univ. Sapientiae Math., 12(2), 317-346, 2020.
  • M. Riaz, M. R. Hashmi, F. Karaaslan, A. Sezgin, M. M. A. A. Shamiri, and M. M. Khalaf, “Emerging Trends in Social Networking Systems and Generation Gap with Neutrosophic Crisp Soft Mapping,” CMES Comput. Model. Eng. Sci., 136(2), 1759-1783, 2023.
  • A. S. Sezer, and A. O. Atagün, “A New Kind of Vector Space: Soft Vector Space,” Southeast Asian Bull. Math., 40(5), 753-770, 2016.
  • A. Sezer, A. O. Atagün, and N. Çağman, “N-Group SI-Action and Its Applications to N-Group Theory,” Fasc. Math., 52, 139-153, 2017.
  • A. Sezer, A. O. Atagün, and N. Çağman, “A New View to N-Group Theory: Soft N-Groups,” Fasc. Math., 51, 123-140, 2013.
  • A. S. Sezer, N. Çağman, and A. O. “Atagün, Soft Intersection Interior Ideals, Quasi-Ideals and Generalized Bi-Ideals; A New Approach to Semigroup Theory II,” J. Multiple-Valued Logic Soft Comput., 23(1-2), 161-207, 2014.
  • A. Sezgin, and A. İlgin, “Soft Intersection Almost Subsemigroups of Semigroups,” Int. J. Math. Phys., 15(1), 13-20, 2024.
  • A. Sezgin, A. O. Atagün, N. Çağman, and H. Demir, “On Near-Rings with Soft Union Ideals and Applications,” New Math. Nat. Comput., 18(2), 495-511, 2022.
  • A. Sezgin, and B. Onur, “Soft Intersection Almost Bi-Ideals of Semigroups,” Syst. Anal., 2(1), 95-105, 2024.
  • A. Sezgin, B. Onur, and A. İlgin, “Soft Intersection Almost Tri-Ideals of Semigroups,” SciNexuses, 1, 126-138, 2024.
  • A. Sezgin, and M. Orbay, “Analysis of Semigroups with Soft Intersection Ideals,” Acta Univ. Sapientiae Math., 14(2), 166-210, 2022.
  • A. Sezgin, A. Shahzad, and A. Mehmood, “A New Operation on Soft Sets: Extended Difference of Soft Sets,” J. New Theory, 27, 33-42, 2019.
  • M. Tunçay, and A. Sezgin, “Soft Union Ring and Its Applications to Ring Theory,” Int. J. Comput. Appl., 151(9), 7-13, 2016.
  • A. Ullah, F. Karaaslan, and I. Ahmad, “Soft Uni-Abel-Grassmann's Groups,” Europ. J. Pure Appl. Math., 11(2), 517-536, 2018.
  • İ. Durak, and A. Sezgin, “Soft Symmetric Intersection-Star Product of Groups,” in press, 2025.
  • M. Khan, F. Ilyas, M. Gulistan, and S. Anis, “A Study of Soft AG-Groupoids,” Ann. Fuzzy Math. Inform., 9(4), 621–638, 2015.
  • A. Sezgin, A. O. Atagün, and N. Çağman, “A Complete Study on and Product of Soft Sets,” Sigma J. Eng. Nat. Sci., 43(1), 1−14. 2025.
There are 88 citations in total.

Details

Primary Language English
Subjects Numerical and Computational Mathematics (Other)
Journal Section Research Article
Authors

Zeynep Ay 0009-0003-9324-0387

Aslıhan Sezgin 0000-0002-1519-7294

Submission Date June 22, 2025
Acceptance Date July 24, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 3 Issue: 2

Cite

IEEE Z. Ay and A. Sezgin, “Soft Union-Gamma Product of Groups”, JSAT, vol. 3, no. 2, pp. 58–72, 2025, doi: 10.63063/jsat.1724734.