Thermophysical characterization of a concrete reinforced with baobab trunk fibers (Adansonia digitata L.) for thermal insulation of buildings.
Yıl 2023,
, 251 - 259, 19.12.2023
Alphousseyni Ghabo
,
Pape Moussa Touré
Younouss Dıéye
,
Vincent Sambou
Öz
In order to contribute to the reduction of energy consumption in building exploitation, we proposed to study the properties of a bio-based building material. This work deals with the characterization of a concrete based on baobab trunk fibers for thermal insulation in buildings. The aim is to study the effect of the fibers content and the type of fibers treatment on the hygroscopic and thermo-physical properties of the concrete. Therefore, two types of treatment were carried out : an alkaline treatment and a thermo-alkaline treatment.
The hygroscopic results show that these concretes are more sensitive to water than the control concrete. This high water absorption of these bio-based materials restricts their application in the construction field. However, we noted that the thermochemical treatment of the fibers better contributed to the reduction of this water sensitivity of the concretes. The thermal conductivity varies between 0.202 W.m-1.K-1 and 0.086 W.m-1.K-1. These results show that these biomaterials can be used in construction to improve insulation in buildings. The experimental thermal conductivities are close to those of the self-consistent model applied to the concrete.
Baobab fibers – Cement -Thermal conductivity -Density -Water absorption -Self-consistent.
Destekleyen Kurum
herhangi bir finansal destek almadık
Kaynakça
- Programme national de réduction des émissions de Gaz à Effet de Serre à travers l’Efficacité Energétique dans le secteur du bâtiment au Sénégal 2013-2016. https://www.sn.undp.org/content/senegal/fr/home/operations/projects/environment_and_energy/EfficaciteEnergetique.html
- Agoudjil, B., Benmansour, N., Boudenne, A., Gherabli, A., & Kareche, A. (2014). Thermal and mechanical performance of natural mortar reinforced with date palm fibers for insulating materials in building. Energy and Buildings, 81(1), 98-108.
- Abdullah, A., Hussin, K., Jamaludin, S. B., & Noor, M. M. (2011). Composite cement reinforced coconut fibers : Physical and mechanical properties and fracture behavior. Australian Journal of Basic and Applied Sciences, 5(7) : 1228-1240. https://www.researchgate.net/publication/250310862.
- Bilba, K., Delvasto, S., Passe-Coutrin, N., Potiron, C. O., & Toro, F. (2010). Sugar cane bagasse fibers reinforced cement composite: Thermal considerations. Composites Part A : Applied Science and Manufacturing, Elsevier, 41(4), 549-556.
- Ajzoul, T., El Bouardi, A., Ezbakhe, H., Mimet, A., Sick, F., & Taoukil, D. (2013). Moisture content influence on the thermal conductivity and diffusivity of wood–concrete composite. Construction and Building Materials, 48(1), 104-115.
- Adhikari, B., Chakraborty, S., Kundu, S. P., Majumder, S. B., & Roy, A. (2013). Polymer modified jute fibre as reinforcing agent controlling the physical and mechanical characteristics of cement mortar. Construction and Building Materials, 49(1), 214-222.
- Panesar, D. K., & Shindman, B. (2012) The mechanical, transport and thermal properties of mortar and concrete containing waste cork. Cement & Concrete Composites 34(1), 982-992.
- Ahouannou, C., Apovo, B. D., Jannot, E. Y., Osseni, S. O. G., & Sanya, E. A. (2016). Caractérisation thermique des mortiers de ciment dopés en fibres de coco par la méthode du plan chaud asymétrique à une mesure de température, Afrique SCIENCE 12(6), 119-129.
- Al Kutti, W., Al Maziad, F. A., Ashraf, N., & Nasir, M. (2020). Assessment of thermal and energy performance of masonry blocks prepared with date palm ash. Materials for Renewable and Sustainable Energy, 9(17), 1-13.
- Bal, H., Diallo, O., Diaw, A., Gaye, S., Ndiaye, M., & Wade, M. (2021). Thermophysical characterization of typha's concrete for its integration into construction. Journal of Building Construction and Planning Research, 9(1), 56-65.
- Al-Mohamadawi, A., Benhabib, K., Dheilly, R., & Goullieux, A. (2016). Influence of lignocellulosic aggregate coating with paraffin wax on flax shive and cement-shive composite properties. Construction and Building Materials, 102(1), 94-104.
- Dheilly, R., Goullieux, A., Khazma, M., & Quéneudec, M. (2012). Coating of a lignocellulosic aggregate with pectin/polyethylenimin mixtures : Effects on flax shive and cement-shive composite properties. Cement & Concrete Composites, 34(1), 223-230.
- Abderraouf, A. (2017). Etude des performances des mortiers renforcés de fibres naturelles : Valorisation des plantes locales. [Doctoral Thesis, Université Aboubakr Belkaïd– Tlemcen].
- Becchio, C., Corgnati, S. P., Kindinis, A., & Pagliolico, S. (2009). Improving environmental sustainability of concrete products: Investigation on M.W.C. thermal and mechanical properties. Energy and Buildings, 41(1), 1127-1134.
- Alioune, S., Mady, C., Mama, S., Mar, D. C., & Nicolas, A. (2018). Le baobab (Adansonia digitata L.): Taxonomie, importance socio-économique et variabilité des caractéristiques physico-chimiques. International Journal of Innovation and Scientific Research, 39(1), 12-23.
- Cisse, M., Diop, A. G., Dornier, M., Reynes, M. & Sakho, M. (2005). Le baobab africain (Adansonia digitata L.): Principales caractéristiques et utilisations. Fruits, 61(1), 55-69.
- Dièye, Y., Ghabo, A., Sambou, V., & Sarr, J. & Touré, P. M. (2020). Physical and hygroscopic characterization of fibers extracted from the Baobab trunk for their use as reinforcement in a building material. International
Journal of Engineering and Technical Research, 10(1), 2454-4698.
- Amziane, S., Merzoud, M., & Sellami, A. (2013). Improvement of mechanical properties of green concrete by treatment of the vegetals fibers. Construction and Building Materials, 47(1), 1117-1124.
- Adj, M., Azilinon, D., Dieye, Y., Faye, M., Sambou, V., & Thiam, A., (2017). Thermo-mechanical characterization of a building material based on Typha Australis. Journal of Building Engineering, 9(19), 142-146.
- Collet, F., & Prétot, S. (2014). Thermal conductivity of hemp concretes: Variation with formulation, density and water content. Construction and Building Materials, 65(1), 612-619.
- Cerezo, V. (2005). Propriétés mécaniques, thermiques et acoustiques d'un matériau à base de particules végétales: Approche expérimentale et modélisation théorique. [Thèse de doctorat, L’Institut National des Sciences Appliquées de Lyon].
- Hui, D., Jiang, M., Wang, Z., Xie, X., Xu, X., & Zhou, Z. (2015). Cellulosic fibers from rice straw and bamboo used as reinforcement of cement-based composites for remarkably improving mechanical properties. Composites Part B : Engineering, 78(1), 153-161.
- Magniont, C. (2010). Contribution à la Formulation et à la Caractérisation d'un Eco matériau de Construction à Base d'Agro Ressources. [Thèse de doctorat, Université de Toulouse III - Paul Sabatier, Génie Civil, Laboratoire de Matériaux et Durabilité des Constructions (LMDC)].
- Fouzia, K., Mohamed, B., Moussa, G., & Sawsen, C. (2014). Optimizing the formulation of flax fiber-reinforced cement composites. Construction and Building Materials 54(1), 659-664.
- Asasutjarit, C., Charoenvai, S., Cheul, S. U., Hirunlabh, J., Khedari, J., & Zeghmati, B. (2007). Development of coconut coir-based lightweight cement board. Construction and Building Materials, 21(2), 277-288.
- Benazzouk, A., Douzane, O., Mezreb, K., Laidoudi, B., & Quéneudec, M. (2008).
- Thermal conductivity of cement composites containing rubber waste particles: Experimental study and modelling. Construction and Building Materials, 22(4), 573-579.
Thermophysical characterization of concrete reinforced with baobab trunk fibers (Adansonia digitata L.) for thermal insulation of buildings
Yıl 2023,
, 251 - 259, 19.12.2023
Alphousseyni Ghabo
,
Pape Moussa Touré
Younouss Dıéye
,
Vincent Sambou
Öz
This work deals with characterizing concrete based on baobab trunk fibers for thermal in- sulation in buildings. The aim is to study the effect of the fiber content and the type of fiber treatment on the hygroscopic and thermo-physical properties of the concrete. Therefore, two types of treatment were carried out: an alkaline treatment and a thermo-alkaline treatment. Hygroscopic test results (34.25% to 54.92% for fiber content ranging from 14% to 28%) show that adding fibers to concrete makes them more sensitive to water. However, thermochemical treatment of the fibers reduces this water sensitivity. The thermal conductivities of concrete range from 0.202 to 0.086 W/m.K for the same fiber content. These results show that these biomaterials can be used in construction to improve building insulation.
Kaynakça
- Programme national de réduction des émissions de Gaz à Effet de Serre à travers l’Efficacité Energétique dans le secteur du bâtiment au Sénégal 2013-2016. https://www.sn.undp.org/content/senegal/fr/home/operations/projects/environment_and_energy/EfficaciteEnergetique.html
- Agoudjil, B., Benmansour, N., Boudenne, A., Gherabli, A., & Kareche, A. (2014). Thermal and mechanical performance of natural mortar reinforced with date palm fibers for insulating materials in building. Energy and Buildings, 81(1), 98-108.
- Abdullah, A., Hussin, K., Jamaludin, S. B., & Noor, M. M. (2011). Composite cement reinforced coconut fibers : Physical and mechanical properties and fracture behavior. Australian Journal of Basic and Applied Sciences, 5(7) : 1228-1240. https://www.researchgate.net/publication/250310862.
- Bilba, K., Delvasto, S., Passe-Coutrin, N., Potiron, C. O., & Toro, F. (2010). Sugar cane bagasse fibers reinforced cement composite: Thermal considerations. Composites Part A : Applied Science and Manufacturing, Elsevier, 41(4), 549-556.
- Ajzoul, T., El Bouardi, A., Ezbakhe, H., Mimet, A., Sick, F., & Taoukil, D. (2013). Moisture content influence on the thermal conductivity and diffusivity of wood–concrete composite. Construction and Building Materials, 48(1), 104-115.
- Adhikari, B., Chakraborty, S., Kundu, S. P., Majumder, S. B., & Roy, A. (2013). Polymer modified jute fibre as reinforcing agent controlling the physical and mechanical characteristics of cement mortar. Construction and Building Materials, 49(1), 214-222.
- Panesar, D. K., & Shindman, B. (2012) The mechanical, transport and thermal properties of mortar and concrete containing waste cork. Cement & Concrete Composites 34(1), 982-992.
- Ahouannou, C., Apovo, B. D., Jannot, E. Y., Osseni, S. O. G., & Sanya, E. A. (2016). Caractérisation thermique des mortiers de ciment dopés en fibres de coco par la méthode du plan chaud asymétrique à une mesure de température, Afrique SCIENCE 12(6), 119-129.
- Al Kutti, W., Al Maziad, F. A., Ashraf, N., & Nasir, M. (2020). Assessment of thermal and energy performance of masonry blocks prepared with date palm ash. Materials for Renewable and Sustainable Energy, 9(17), 1-13.
- Bal, H., Diallo, O., Diaw, A., Gaye, S., Ndiaye, M., & Wade, M. (2021). Thermophysical characterization of typha's concrete for its integration into construction. Journal of Building Construction and Planning Research, 9(1), 56-65.
- Al-Mohamadawi, A., Benhabib, K., Dheilly, R., & Goullieux, A. (2016). Influence of lignocellulosic aggregate coating with paraffin wax on flax shive and cement-shive composite properties. Construction and Building Materials, 102(1), 94-104.
- Dheilly, R., Goullieux, A., Khazma, M., & Quéneudec, M. (2012). Coating of a lignocellulosic aggregate with pectin/polyethylenimin mixtures : Effects on flax shive and cement-shive composite properties. Cement & Concrete Composites, 34(1), 223-230.
- Abderraouf, A. (2017). Etude des performances des mortiers renforcés de fibres naturelles : Valorisation des plantes locales. [Doctoral Thesis, Université Aboubakr Belkaïd– Tlemcen].
- Becchio, C., Corgnati, S. P., Kindinis, A., & Pagliolico, S. (2009). Improving environmental sustainability of concrete products: Investigation on M.W.C. thermal and mechanical properties. Energy and Buildings, 41(1), 1127-1134.
- Alioune, S., Mady, C., Mama, S., Mar, D. C., & Nicolas, A. (2018). Le baobab (Adansonia digitata L.): Taxonomie, importance socio-économique et variabilité des caractéristiques physico-chimiques. International Journal of Innovation and Scientific Research, 39(1), 12-23.
- Cisse, M., Diop, A. G., Dornier, M., Reynes, M. & Sakho, M. (2005). Le baobab africain (Adansonia digitata L.): Principales caractéristiques et utilisations. Fruits, 61(1), 55-69.
- Dièye, Y., Ghabo, A., Sambou, V., & Sarr, J. & Touré, P. M. (2020). Physical and hygroscopic characterization of fibers extracted from the Baobab trunk for their use as reinforcement in a building material. International
Journal of Engineering and Technical Research, 10(1), 2454-4698.
- Amziane, S., Merzoud, M., & Sellami, A. (2013). Improvement of mechanical properties of green concrete by treatment of the vegetals fibers. Construction and Building Materials, 47(1), 1117-1124.
- Adj, M., Azilinon, D., Dieye, Y., Faye, M., Sambou, V., & Thiam, A., (2017). Thermo-mechanical characterization of a building material based on Typha Australis. Journal of Building Engineering, 9(19), 142-146.
- Collet, F., & Prétot, S. (2014). Thermal conductivity of hemp concretes: Variation with formulation, density and water content. Construction and Building Materials, 65(1), 612-619.
- Cerezo, V. (2005). Propriétés mécaniques, thermiques et acoustiques d'un matériau à base de particules végétales: Approche expérimentale et modélisation théorique. [Thèse de doctorat, L’Institut National des Sciences Appliquées de Lyon].
- Hui, D., Jiang, M., Wang, Z., Xie, X., Xu, X., & Zhou, Z. (2015). Cellulosic fibers from rice straw and bamboo used as reinforcement of cement-based composites for remarkably improving mechanical properties. Composites Part B : Engineering, 78(1), 153-161.
- Magniont, C. (2010). Contribution à la Formulation et à la Caractérisation d'un Eco matériau de Construction à Base d'Agro Ressources. [Thèse de doctorat, Université de Toulouse III - Paul Sabatier, Génie Civil, Laboratoire de Matériaux et Durabilité des Constructions (LMDC)].
- Fouzia, K., Mohamed, B., Moussa, G., & Sawsen, C. (2014). Optimizing the formulation of flax fiber-reinforced cement composites. Construction and Building Materials 54(1), 659-664.
- Asasutjarit, C., Charoenvai, S., Cheul, S. U., Hirunlabh, J., Khedari, J., & Zeghmati, B. (2007). Development of coconut coir-based lightweight cement board. Construction and Building Materials, 21(2), 277-288.
- Benazzouk, A., Douzane, O., Mezreb, K., Laidoudi, B., & Quéneudec, M. (2008).
- Thermal conductivity of cement composites containing rubber waste particles: Experimental study and modelling. Construction and Building Materials, 22(4), 573-579.