Effect of calcination on the physical, chemical, morphological, and cementitious properties of red mud
Yıl 2023,
, 297 - 306, 19.12.2023
Venkatesh Chava
,
Sonali Sri Durga Chereddy
Öz
Red mud (RM), a by-product of aluminum production, poses environmental concerns with its disposal. This study explored calcining RM at 600 °C for 0–6 hours to utilize it as a cement substitute. Calcination up to 2 hours decreased particle size and increased surface area due to moisture loss, while further calcination reversed these effects. XRF analysis showed high Fe2O3, Al2O3, SiO2 contents. XRD revealed goethite transformed to hematite and gibbsite to alumina. SEM images displayed a loose then denser structure over time. 10% calcined RM incorporated into cement showed 2-hour calcined RM exhibited optimal properties, including high strength (46.27 MPa) and strength activity index (117.24%). SEM confirmed improved C-S-H gel formation with 2-hour calcined RM. In summary, calcining RM optimally at 600 °C for 2 hours allows its effective use as a sustainable cementitious material, providing environ- mental and technical benefits of RM utilization in cement composites.
Destekleyen Kurum
CVR College of Engineering
Proje Numarası
Performance and microstructure characterization of red mud based concrete
Kaynakça
- Muraleedharan, M., & Nadir, Y. (2021). Factors affecting the mechanical properties and microstructure of geopolymers from red mud and granite waste powder: A review. Ceram Int, 47(10), 1325713279. [CrossRef]
- Çelikten, S., Atabey, İ. İ., & Bayer Öztürk, Z. (2022). Cleaner environment approach by the utilization of ceramic sanitaryware waste in Portland cement mortar at ambient and elevated temperatures. Iranian J Sci Technol Trans Civ Eng, 46(6), 42914301. [CrossRef]
- Korkmaz, A. V., & Kayıran, H. F. (2022). Investigation of mechanical activation effect on high-volume natural pozzolanic cements. Open Chem, 20(1), 10291044. [CrossRef]
- Gou, M., Hou, W., Zhou, L., Zhao, J., & Zhao, M. (2023). Preparation and properties of calcium aluminate cement with Bayer red mud. Constr Build Mater, 373, 130827. [CrossRef]
- Venkatesh, C., Nerella, R., & Chand, M. S. R. (2020). Experimental investigation of strength, durability, and microstructure of red-mud concrete. J Korean Ceram Soc, 57(2), 167174. [CrossRef]
- Alam, S., Das, S. K., & Rao, B. H. (2019). Strength and durability characteristic of alkali-activated GGBS stabilized red mud as geo-material. Constr Build Mater, 211, 932942. [CrossRef]
- Mymrin, V., Alekseev, K., Fortini, O. M., Aibuldinov, Y. K., Pedroso, C. L., Nagalli, A., Winter, E. Jr., Catai, R. E. & Costa, E. B. C. (2017). Environmentally clean materials from hazardous red mud, ground-cooled ferrous slag, and lime production waste. J Clean Prod, 161, 376381. [CrossRef]
- Ortega, J. M., Cabeza, M., Tenza-Abril, A. J., Real-Herraiz, T., Climent, M. Á., & Sánchez, I. (2019). Effects of red mud addition in the microstructure, durability, and mechanical performance of cement mortars. Appl Sci, 9(5), 984. [CrossRef]
- Liu, Z., & Li, H. (2015). Metallurgical process for valuable elements recovery from red mud - A review. Hydrometallurgy, 155, 2943. [CrossRef]
- Abdel-Raheem, M., Santana, L. G., Cordava, M. P., & Martínez, B. O. (2017). Uses of red mud as a construction material. In AEI 2017 (pp. 388399). [CrossRef]
- Patangia, J., Saravanan, T. J., Kabeer, K. S. A., & Bisht, K. (2023). Study on the utilization of red mud (bauxite waste) as a supplementary cementitious material: Pathway to attaining sustainable development goals. Constr Build Mater, 375, 131005. [CrossRef]
- Nikbin, I. M., Aliaghazadeh, M., Charkhtab, S. H., & Fathollahpour, A. (2018). Environmental impacts and mechanical properties of lightweight concrete containing bauxite residue (red mud). J Clean Prod, 172, 26832694. [CrossRef]
- Su, Z., & Li, X. (2021). Study on preparation and interfacial transition zone microstructure of red mud-yellow phosphorus slag-cement concrete. Mater, 14(11), 2768. [CrossRef]
- Yang, X., Zhao, J., Li, H., Zhao, P., & Chen, Q. (2017). Recycling red mud from the production of aluminium as a red cement-based mortar. Waste Manag Res, 35(5), 500507. [CrossRef]
- Ghalehnovi, M., Shamsabadi, E. A., Khodabakhshian, A., Sourmeh, F., & De Brito, J. (2019). Self-compacting architectural concrete production using red mud. Constr Build Mater, 226, 418427. [CrossRef]
- Venkatesh, C., Nerella, R., & Chand, M. S. R. (2020). Comparison of mechanical and durability properties of treated and untreated red mud concrete. Mater Today: Proc, 27, 284287. [CrossRef]
- Raja, R. R., Pillai, E. P., & Santhakumar, A. R. (2013). Effective utilization of red mud bauxite waste as a replacement of cement in concrete for environmental conservation. Ecol Environ Conserv, 19(1), 247255.
- Tang, W. C., Wang, Z., Liu, Y., & Cui, H. Z. (2018). Influence of red mud on fresh and hardened properties of self-compacting concrete. Constr Build Mater, 178, 288300. [CrossRef]
- Li, Z., Zhang, J., Li, S., Gao, Y., Liu, C., & Qi, Y. (2020). Effect of different gypsums on the workability and mechanical properties of red mud-slag based grouting materials. J Clean Prod, 245, 118759. [CrossRef]
- Liu, J., Li, X., Lu, Y., & Bai, X. (2020). Effects of Na/Al ratio on mechanical properties and microstructure of red mud-coal metakaolin geopolymer. Constr Build Mater, 263, 120653. [CrossRef]
- Raj, R. R., Pillai, E. P., & Santhakumar, A. R. (2012). Strength and corrosion properties of concrete incorporating metakaolin and red mud. Eur J Sci Res, 91(4), 569579.
- Qaidi, S. M., Tayeh, B. A., Ahmed, H. U., & Emad, W. (2022). A review of the sustainable utilization of red mud and fly ash for the production of geopolymer composites. Constr Build Mater, 350, 128892. [CrossRef]
- Zhao, Y., Zhang, B., He, F., Meng, F., Yang, S., Wang, Q., & Zhu, W. (2023). Effects of dosage and type of GGBS on the mechanical properties of a hybrid red-mud geopolymer. J Mater Civ Eng, 35(4), 04023008. [CrossRef]
- Huang, X., Li, J. S., Jiang, W., Chen, Z., Wan, Y., Xue, Q., Liu, L. & Poon, C. S. (2022). Recycling of phosphogypsum and red mud in low carbon and green cementitious materials for vertical barrier. Sci Total Environ, 838, 155925. [CrossRef]
- Ghalehnovi, M., Roshan, N., Hakak, E., Shamsabadi, E. A., & De Brito, J. (2019). Effect of red mud (bauxite residue) as cement replacement on the properties of self-compacting concrete incorporating various fillers. J Clean Prod, 240, 118213. [CrossRef]
- Bajpai, R., Shrivastava, A., & Singh, M. (2020). Properties of fly ash geopolymer modified with red mud and silica fume: A comparative study. SN Appl Sci, 2, 116. [CrossRef]
- Wang, S., Jin, H., Deng, Y., & Xiao, Y. (2021). Comprehensive utilization status of red mud in China: A critical review. J Clean Prod, 289, 125136. [CrossRef]
- Zhao, R., Zhang, L., Guo, B., Chen, Y., Fan, G., Jin, Z., Guan, X., & Zhu, J. (2021). Unveiling substitution preference of chromium ions in sulphoaluminate cement clinker phases. Compos B Eng, 222, 109092. [CrossRef]
- Luo, S., Liu, M., Yang, L., Chang, J., Yang, W., Yan, X., Yu, H., & Shen, Y. (2019). Utilization of waste from alumina industry to produce sustainable cement-based materials. Constr Build Mater, 229, 116795. [CrossRef]
- Danner, T., & Justnes, H. (2020). Bauxite residue as supplementary cementitious material–efforts to reduce the amount of soluble sodium. Nord Concr Res, 62(1):120. [CrossRef]
- Manfroi, E. P., Cheriaf, M., & Rocha, J. C. (2014). Microstructure, mineralogy and environmental evaluation of cementitious composites produced with red mud waste. Constr Build Mater, 67, 2936. [CrossRef]
- Liu, X., Zhang, N., Sun, H., Zhang, J., & Li, L. (2011). Structural investigation relating to the cementitious activity of bauxite residue Red mud. Cem Concr Res, 41(8), 847853. [CrossRef]
- ASTM C150/C150M-16e1 (2016) Standard specification for Portland cement. ASTM International.
- BIS, IS 383-2016 (2016) Specification for coarse and fine aggregates from natural sources for concrete. Bureau of Indian Standards.
- Wu, C. S., & Liu, D. Y. (2012). Mineral phase and physical properties of red mud calcined at different temperatures. Journal of Nanomaterials, 2012, 16. [CrossRef]
- ASTM C109/C109M. (2022). Standard Test Methods for Compressive Strength of Cement Mortar. ASTM International.
- ASTM C31/C31M. (2019). Standard Practice for Making and Curing Concrete Test Specimens in the Field. ASTM International.
- ASTM C311/C311M. (2022). Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete. ASTM International.
- Nath, H., Sahoo, P., & Sahoo, A. (2015). Characterization of red mud treated under high-temperature fluidization. Powder Technol, 269, 233239. [CrossRef]
- BIS (Bureau of Indian Standards) IS: 4031 (Part 11):1988. Method of Physical Test for Hydraulic Cement (Determination of Density). Bureau of Indian Standards.
- Zhang, Y. N., & Pan, Z. H. (2005). Characterization of red mud thermally treated at different temperatures. J Jinan Uni Sci Technol, 19(4), 293297.
- Wang, P., & Liu, D. Y. (2012). Physical and chemical properties of sintering red mud and Bayer red mud and the implications for beneficial utilization. Materials, 5(10), 18001810. [CrossRef]
- Meher, S. N., & Padhi, B. (2014). A novel method for the extraction of alumina from red mud by divalent alkaline earth metal oxide and soda ash sinter process. Int J Environ Waste Manag, 13(3), 231245. [CrossRef]
- Wang, Y., Burris, L., Shearer, C. R., Hooton, D., & Suraneni, P. (2021). Strength activity index and bulk resistivity index modifications that differentiate inert and reactive materials. Cem Concr Compos, 124, 104240. [CrossRef]
- Kumar, K. S., Rao, M. S., Reddy, V. S., Shrihari, S., & Hugar, P. (2023). Effect of particle size of colloidal nano-silica on the properties of the SCM based concrete. EDP Sciences. [CrossRef]
- Madhavi, C., Reddy, V. S., Rao, M. S., Shrihari, S., Kadhim, S. I., & Sharma, S. (2023). The effect of elevated temperature on self-compacting concrete: Physical and mechanical properties. EDP Sciences. [CrossRef]
- Rossignolo, J. A. (2009). Interfacial interactions in concretes with silica fume and SBR latex. Constr Build Mater, 23(2), 817821. [CrossRef]
- Chand, S. R. M., Kumar, R. P., Swamy, P. N. R. G., & Kumar, G. R. (2018). Performance and microstructure characteristics of self-curing self-compacting concrete. Adv Cem Res, 30(10), 451468. [CrossRef]
- Venkatesh, C., Nerella, R., & Chand, M. S. R. (2021). Role of red mud as a cementing material in concrete: A comprehensive study on durability behavior. Innov Infrastruct Solut, 6(1), 13. [CrossRef]
Yıl 2023,
, 297 - 306, 19.12.2023
Venkatesh Chava
,
Sonali Sri Durga Chereddy
Proje Numarası
Performance and microstructure characterization of red mud based concrete
Kaynakça
- Muraleedharan, M., & Nadir, Y. (2021). Factors affecting the mechanical properties and microstructure of geopolymers from red mud and granite waste powder: A review. Ceram Int, 47(10), 1325713279. [CrossRef]
- Çelikten, S., Atabey, İ. İ., & Bayer Öztürk, Z. (2022). Cleaner environment approach by the utilization of ceramic sanitaryware waste in Portland cement mortar at ambient and elevated temperatures. Iranian J Sci Technol Trans Civ Eng, 46(6), 42914301. [CrossRef]
- Korkmaz, A. V., & Kayıran, H. F. (2022). Investigation of mechanical activation effect on high-volume natural pozzolanic cements. Open Chem, 20(1), 10291044. [CrossRef]
- Gou, M., Hou, W., Zhou, L., Zhao, J., & Zhao, M. (2023). Preparation and properties of calcium aluminate cement with Bayer red mud. Constr Build Mater, 373, 130827. [CrossRef]
- Venkatesh, C., Nerella, R., & Chand, M. S. R. (2020). Experimental investigation of strength, durability, and microstructure of red-mud concrete. J Korean Ceram Soc, 57(2), 167174. [CrossRef]
- Alam, S., Das, S. K., & Rao, B. H. (2019). Strength and durability characteristic of alkali-activated GGBS stabilized red mud as geo-material. Constr Build Mater, 211, 932942. [CrossRef]
- Mymrin, V., Alekseev, K., Fortini, O. M., Aibuldinov, Y. K., Pedroso, C. L., Nagalli, A., Winter, E. Jr., Catai, R. E. & Costa, E. B. C. (2017). Environmentally clean materials from hazardous red mud, ground-cooled ferrous slag, and lime production waste. J Clean Prod, 161, 376381. [CrossRef]
- Ortega, J. M., Cabeza, M., Tenza-Abril, A. J., Real-Herraiz, T., Climent, M. Á., & Sánchez, I. (2019). Effects of red mud addition in the microstructure, durability, and mechanical performance of cement mortars. Appl Sci, 9(5), 984. [CrossRef]
- Liu, Z., & Li, H. (2015). Metallurgical process for valuable elements recovery from red mud - A review. Hydrometallurgy, 155, 2943. [CrossRef]
- Abdel-Raheem, M., Santana, L. G., Cordava, M. P., & Martínez, B. O. (2017). Uses of red mud as a construction material. In AEI 2017 (pp. 388399). [CrossRef]
- Patangia, J., Saravanan, T. J., Kabeer, K. S. A., & Bisht, K. (2023). Study on the utilization of red mud (bauxite waste) as a supplementary cementitious material: Pathway to attaining sustainable development goals. Constr Build Mater, 375, 131005. [CrossRef]
- Nikbin, I. M., Aliaghazadeh, M., Charkhtab, S. H., & Fathollahpour, A. (2018). Environmental impacts and mechanical properties of lightweight concrete containing bauxite residue (red mud). J Clean Prod, 172, 26832694. [CrossRef]
- Su, Z., & Li, X. (2021). Study on preparation and interfacial transition zone microstructure of red mud-yellow phosphorus slag-cement concrete. Mater, 14(11), 2768. [CrossRef]
- Yang, X., Zhao, J., Li, H., Zhao, P., & Chen, Q. (2017). Recycling red mud from the production of aluminium as a red cement-based mortar. Waste Manag Res, 35(5), 500507. [CrossRef]
- Ghalehnovi, M., Shamsabadi, E. A., Khodabakhshian, A., Sourmeh, F., & De Brito, J. (2019). Self-compacting architectural concrete production using red mud. Constr Build Mater, 226, 418427. [CrossRef]
- Venkatesh, C., Nerella, R., & Chand, M. S. R. (2020). Comparison of mechanical and durability properties of treated and untreated red mud concrete. Mater Today: Proc, 27, 284287. [CrossRef]
- Raja, R. R., Pillai, E. P., & Santhakumar, A. R. (2013). Effective utilization of red mud bauxite waste as a replacement of cement in concrete for environmental conservation. Ecol Environ Conserv, 19(1), 247255.
- Tang, W. C., Wang, Z., Liu, Y., & Cui, H. Z. (2018). Influence of red mud on fresh and hardened properties of self-compacting concrete. Constr Build Mater, 178, 288300. [CrossRef]
- Li, Z., Zhang, J., Li, S., Gao, Y., Liu, C., & Qi, Y. (2020). Effect of different gypsums on the workability and mechanical properties of red mud-slag based grouting materials. J Clean Prod, 245, 118759. [CrossRef]
- Liu, J., Li, X., Lu, Y., & Bai, X. (2020). Effects of Na/Al ratio on mechanical properties and microstructure of red mud-coal metakaolin geopolymer. Constr Build Mater, 263, 120653. [CrossRef]
- Raj, R. R., Pillai, E. P., & Santhakumar, A. R. (2012). Strength and corrosion properties of concrete incorporating metakaolin and red mud. Eur J Sci Res, 91(4), 569579.
- Qaidi, S. M., Tayeh, B. A., Ahmed, H. U., & Emad, W. (2022). A review of the sustainable utilization of red mud and fly ash for the production of geopolymer composites. Constr Build Mater, 350, 128892. [CrossRef]
- Zhao, Y., Zhang, B., He, F., Meng, F., Yang, S., Wang, Q., & Zhu, W. (2023). Effects of dosage and type of GGBS on the mechanical properties of a hybrid red-mud geopolymer. J Mater Civ Eng, 35(4), 04023008. [CrossRef]
- Huang, X., Li, J. S., Jiang, W., Chen, Z., Wan, Y., Xue, Q., Liu, L. & Poon, C. S. (2022). Recycling of phosphogypsum and red mud in low carbon and green cementitious materials for vertical barrier. Sci Total Environ, 838, 155925. [CrossRef]
- Ghalehnovi, M., Roshan, N., Hakak, E., Shamsabadi, E. A., & De Brito, J. (2019). Effect of red mud (bauxite residue) as cement replacement on the properties of self-compacting concrete incorporating various fillers. J Clean Prod, 240, 118213. [CrossRef]
- Bajpai, R., Shrivastava, A., & Singh, M. (2020). Properties of fly ash geopolymer modified with red mud and silica fume: A comparative study. SN Appl Sci, 2, 116. [CrossRef]
- Wang, S., Jin, H., Deng, Y., & Xiao, Y. (2021). Comprehensive utilization status of red mud in China: A critical review. J Clean Prod, 289, 125136. [CrossRef]
- Zhao, R., Zhang, L., Guo, B., Chen, Y., Fan, G., Jin, Z., Guan, X., & Zhu, J. (2021). Unveiling substitution preference of chromium ions in sulphoaluminate cement clinker phases. Compos B Eng, 222, 109092. [CrossRef]
- Luo, S., Liu, M., Yang, L., Chang, J., Yang, W., Yan, X., Yu, H., & Shen, Y. (2019). Utilization of waste from alumina industry to produce sustainable cement-based materials. Constr Build Mater, 229, 116795. [CrossRef]
- Danner, T., & Justnes, H. (2020). Bauxite residue as supplementary cementitious material–efforts to reduce the amount of soluble sodium. Nord Concr Res, 62(1):120. [CrossRef]
- Manfroi, E. P., Cheriaf, M., & Rocha, J. C. (2014). Microstructure, mineralogy and environmental evaluation of cementitious composites produced with red mud waste. Constr Build Mater, 67, 2936. [CrossRef]
- Liu, X., Zhang, N., Sun, H., Zhang, J., & Li, L. (2011). Structural investigation relating to the cementitious activity of bauxite residue Red mud. Cem Concr Res, 41(8), 847853. [CrossRef]
- ASTM C150/C150M-16e1 (2016) Standard specification for Portland cement. ASTM International.
- BIS, IS 383-2016 (2016) Specification for coarse and fine aggregates from natural sources for concrete. Bureau of Indian Standards.
- Wu, C. S., & Liu, D. Y. (2012). Mineral phase and physical properties of red mud calcined at different temperatures. Journal of Nanomaterials, 2012, 16. [CrossRef]
- ASTM C109/C109M. (2022). Standard Test Methods for Compressive Strength of Cement Mortar. ASTM International.
- ASTM C31/C31M. (2019). Standard Practice for Making and Curing Concrete Test Specimens in the Field. ASTM International.
- ASTM C311/C311M. (2022). Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete. ASTM International.
- Nath, H., Sahoo, P., & Sahoo, A. (2015). Characterization of red mud treated under high-temperature fluidization. Powder Technol, 269, 233239. [CrossRef]
- BIS (Bureau of Indian Standards) IS: 4031 (Part 11):1988. Method of Physical Test for Hydraulic Cement (Determination of Density). Bureau of Indian Standards.
- Zhang, Y. N., & Pan, Z. H. (2005). Characterization of red mud thermally treated at different temperatures. J Jinan Uni Sci Technol, 19(4), 293297.
- Wang, P., & Liu, D. Y. (2012). Physical and chemical properties of sintering red mud and Bayer red mud and the implications for beneficial utilization. Materials, 5(10), 18001810. [CrossRef]
- Meher, S. N., & Padhi, B. (2014). A novel method for the extraction of alumina from red mud by divalent alkaline earth metal oxide and soda ash sinter process. Int J Environ Waste Manag, 13(3), 231245. [CrossRef]
- Wang, Y., Burris, L., Shearer, C. R., Hooton, D., & Suraneni, P. (2021). Strength activity index and bulk resistivity index modifications that differentiate inert and reactive materials. Cem Concr Compos, 124, 104240. [CrossRef]
- Kumar, K. S., Rao, M. S., Reddy, V. S., Shrihari, S., & Hugar, P. (2023). Effect of particle size of colloidal nano-silica on the properties of the SCM based concrete. EDP Sciences. [CrossRef]
- Madhavi, C., Reddy, V. S., Rao, M. S., Shrihari, S., Kadhim, S. I., & Sharma, S. (2023). The effect of elevated temperature on self-compacting concrete: Physical and mechanical properties. EDP Sciences. [CrossRef]
- Rossignolo, J. A. (2009). Interfacial interactions in concretes with silica fume and SBR latex. Constr Build Mater, 23(2), 817821. [CrossRef]
- Chand, S. R. M., Kumar, R. P., Swamy, P. N. R. G., & Kumar, G. R. (2018). Performance and microstructure characteristics of self-curing self-compacting concrete. Adv Cem Res, 30(10), 451468. [CrossRef]
- Venkatesh, C., Nerella, R., & Chand, M. S. R. (2021). Role of red mud as a cementing material in concrete: A comprehensive study on durability behavior. Innov Infrastruct Solut, 6(1), 13. [CrossRef]