Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, , 221 - 238, 30.09.2024
https://doi.org/10.47481/jscmt.1536060

Öz

Kaynakça

  • 1. Abusafieh, S. (2020). The conflict between aesthetics and sustainability: Empowering sustainable architecture with aesthetics to enhance people’s lifestyle and sustainable behavior. In A. Sayigh (Ed.), Renewable energy and sustainable buildings: Selected papers from the world renewable energy congress WREC 2018 (pp. 653–664). Springer. [CrossRef]
  • 2. Georgiou, M. D. (2006). An environmental guide for selecting wall cladding materials for architects [Master’s thesis, University College London]. Bartlett School of Graduate Studies, University College London.
  • 3. Abdi, M. Y., & Virányi, Z. (2010). Aesthetics in sustainability [Technical Report]. VIA University College, Denmark.
  • 4. Kupatadze, I. (2014). Ethics vs. aesthetics in sustainable architecture. WIT Trans Built Environ, 142, 553–562. [CrossRef]
  • 5. Jannat, N., Hussien, A., Abdullah, B., & Cotgrave, A. (2020). A comparative simulation study of the thermal performances of the building envelope wall materials in the tropics. Sustainability (Basel), 12(12), 4892. [CrossRef]
  • 6. Sadrolodabaee, P., Hosseini, S. A., Claramunt, J., Ardanuy, M., Haurie, L., Lacasta, A. M., & de la Fuente, A. (2022). Experimental characterization of comfort performance parameters and multi-criteria sustainability assessment of recycled textile-reinforced cement facade cladding. J Clean Prod, 356, 131900. [CrossRef]
  • 7. Toplicic-Curcic, G., Grdic, D., Ristic, N., & Grdic, Z. (2016). Ceramic facade cladding as an element of sustainable development. Facta Univ Ser Archit Civ Eng, 13(3), 219–231. [CrossRef]
  • 8. Balaji, N., Mani, M., & Reddy, B. V. (2013). Thermal performance of the building walls. Preprints of the 1st IBPSA Italy conference, Free University of Bozen-Bolzano.
  • 9. Diao, R., Sun, L., & Yang, F. (2018). Thermal performance of building wall materials in villages and towns in hot summer and cold winter zone in China. Appl Therm Eng, 128, 517–530. [CrossRef]
  • 10. Atashbar, H., & Noorzai, E. (2023). Optimization of exterior wall cladding materials for residential buildings using the non-dominated sorting genetic algorithm II (NSGAII) based on the integration of building information modeling (BIM) and life cycle assessment (LCA) for energy consumption: A case study. Sustainability, 15(21), 15647. [CrossRef]
  • 11. Taylor, C., Roy, K., Dani, A. A., Lim, J. B. P., De Silva, K., & Jones, M. (2023). Delivering sustainable housing through material choice. Sustainability, 15(4), 3331. [CrossRef]
  • 12. Bradtmueller, J. P., & Foley, S. P. (2014). Historical trends of exterior wall materials used in US residential construction. 50th ASC annual international conference proceedings, Kentucky, USA.
  • 13. Radhi, H. (2010). On the optimal selection of wall cladding system to reduce direct and indirect CO2 emissions. Energy, 35(3), 1412–1424. [CrossRef]
  • 14. Takano, A., Hughes, M., & Winter, S. (2014). A multidisciplinary approach to sustainable building material selection: A case study in a Finnish context. Build Environ, 82, 526–535. [CrossRef]
  • 15. Darwish, E. A., Eldeeb, A. S., & Midani, M. (2023). Housing retrofit for energy efficiency: Utilizing modular date palm midribs claddings to enhance indoor thermal comfort. Ain Shams Eng J, 15, 102323. [CrossRef]
  • 16. Alegbe, M., & Mtaver, G. (2023). Climate resilience and energy performance of future buildings in Nigeria based on RCP 4.5 and 8.5 scenarios. J Des Resil Arch Plan, 4(3), 354–371. [CrossRef]
  • 17. Pekdogan, T., & Basaran, T. (2017). Thermal performance of different exterior wall structures based on wall orientation. Appl Therm Eng, 112, 15–24. [CrossRef]
  • 18. Alegbe, M., Chukwuemeka, L., Lekwauwa Kalu, J., & Eke-Nwachukwu, A. (2023). Building optimisation vis-à-vis solar shading for improved comfort and energy efficiency in classrooms. Dimensi J Architect Built Environ, 50(2), 53–68. [CrossRef]
  • 19. Craig, A., Abbott, L., Laing, R., & Edge, M. (2017). Assessing the acceptability of alternative cladding materials in housing: Theoretical and methodological challenges. In Housing, space and quality of life (pp. 59–69). Routledge. [CrossRef]
  • 20. Abu Dabous, S., Ibrahim, T., Shareef, S., Mushtaha, E., & Alsyouf, I. (2022). Sustainable façade cladding selection for buildings in hot climates based on thermal performance and energy consumption. Results Eng, 16, 100643. [CrossRef]
  • 21. Dodge, B., & Liu, R. (2018). Comparing exterior wall finishes using life-cycle assessment. 7th International Building Physics Conference, IBPC 2018, Syracuse, NY, USA. [CrossRef]
  • 22. Folorunso, C., Akingbohungbe, D., & Ogunruku, M. (2017). Choice prediction factors in building exterior finishes’ selection in Lagos, Nigeria: Clients’ perspective. Int J Res Eng Soc Sci, 7(1), 14–20.
  • 23. Efthymiou, E., Cöcen, Ö. N., & Ermolli, S. R. (2010). Sustainable aluminium systems. Sustainability, 2(9), 3100–3109. [CrossRef]
  • 24. Brookes, A. J., & Meijs, M. (2008). Cladding of buildings (4th ed.). Taylor & Francis. [CrossRef]
  • 25. Grazuleviciute-Vileniske, I., Viliunas, G., & Daugelaite, A. (2021). The role of aesthetics in building sustainability assessment. Spatium, 45, 79–89. [CrossRef]
  • 26. Slaton, D. (2017). Challenges of modern materials: Assessment and repair. J Archit Conserv, 23(1-2), 47–61. [CrossRef]
  • 27. Dissanayake, D. M. K. W., Jayasinghe, C., & Jayasinghe, M. T. R. (2017). A comparative embodied energy analysis of a house with recycled expanded polystyrene (EPS) based foam concrete wall panels. Energy Build, 135, 85–94. [CrossRef]
  • 28. Ozel, M. (2011). Thermal performance and optimum insulation thickness of building walls with different structure materials. Appl Therm Eng, 31(17), 3854–3863. [CrossRef]
  • 29. Mac-Barango, D. (2017). Comparative cost analysis of wall cladding materials. Int J Econ Financ Manage, 2, 20–33.
  • 30. Mediastika, C. E., & Hariyono, J. (2017). Wall cladding effects and occupants’ perception of indoor temperature of typical student apartments in Surabaya, Indonesia. Environ Climate Technol, 20(1), 51–66. [CrossRef]
  • 31. Hill, C., Kymäläinen, M., & Rautkari, L. (2022). Review of the use of solid wood as an external cladding material in the built environment. J Mater Sci, 57(20), 9031–9076. [CrossRef]
  • 32. Metin, B., & Tavil, A. (2014). Environmental assessment of cladding construction: A case study of residential buildings. Proceedings of the 3rd International Environment and Design Congress, Istanbul, Turkey. [CrossRef]
  • 33. Hamoush, S., Abu-Lebdeh, T., Picornell, M., & Amer, S. (2011). Development of sustainable engineered stone cladding for toughness, durability, and energy conservation. Constr Build Mater, 25(10), 4006–4016. [CrossRef]
  • 34. Tiwari, R., Boháč, V., Réh, R., Lo Giudice, V., Todaro, L., Vretenár, V., Štofanik, V., & Kristak, L. (2023). Investigation of thermophysical properties of Turkey oak particleboard for sustainable building envelopes. Dev Built Environ, 16, 100228. [CrossRef]
  • 35. Zhu, Z., Jin, X., Li, Q., & Meng, Q. (2015). Experimental study on the thermal performance of ventilation wall with cladding panels in hot and humid area. Procedia Eng, 121, 410–414. [CrossRef]
  • 36. Metin, B., & Tavil, A. (2010). Sustainability of the construction process of the cladding systems. Proceedings of the ICBEST 2010-International Conference on Building Envelope Systems and Technologies, Vancouver, Canada.
  • 37. Hassinen, P., Misiek, T., & Naujoks, B. (2011). Cladding systems for sandwich panels - refurbishment of walls and roof. Eurosteel 2011 / Proceedings of the 6th European Conference on Steel and Composite Structures, Budapest, Hungary.
  • 38. Alegbe, M. (2022). Comparative analysis of wall materials toward improved thermal comfort, reduced emission, and construction cost in tropical buildings. 11th Masters Conference: People and Buildings, University of Westminster, London, United Kingdom.
  • 39. Brischke, C. (2019). Timber. In Long-term performance and durability of masonry structures (pp. 129–168). Elsevier. [CrossRef]
  • 40. Okuda, S., Corpataux, L., & Wei, K. H. (2023). Timber cladding discolouration in tropical monsoon climates. World Conference on Timber Engineering, Oslo, Norway. [CrossRef]
  • 41. Orzechowski, T., & Orzechowski, M. (2018). Optimal thickness of various insulation materials for different temperature conditions and heat sources in terms of economic aspect. J Build Phys, 41(4), 377–393. [CrossRef]
  • 42. Marshall, A., Fitton, R., Swan, W., Farmer, D., Johnston, D., Benjaber, M., & Ji, Y. (2017). Domestic building fabric performance: Closing the gap between the in situ measured and modelled performance. Energy Build, 150, 307–317. [CrossRef]
  • 43. Tayari, N., & Nikpour, M. (2023). Investigating DesignBuilder simulation software’s validation in terms of heat gain through field measured data of adjacent rooms of courtyard house. Iranica J Energy Environ, 14(1), 1–8. [CrossRef]
  • 44. Aunión-Villa, J., Gómez-Chaparro, M., & García-Sanz-Calcedo, J. (2021). Study of the energy intensity by built areas in a medium-sized Spanish hospital. Energy Effic, 14(3), 26. [CrossRef]
  • 45. Gangolells, M., Casals, M., Forcada, N., Macarulla, M., & Cuerva, E. (2016). Energy mapping of existing building stock in Spain. J Clean Prod, 112, 3895–3904. [CrossRef]
  • 46. Kong, X., Lu, S., Gao, P., Zhu, N., Wu, W., & Cao, X. (2012). Research on the energy performance and indoor environment quality of typical public buildings in the tropical areas of China. Energy Build, 48, 155–167. [CrossRef]
  • 47. Xu, P., Huang, J., Shen, P., Ma, X., Gao, X., Xu, Q., Jiang, H., & Xiang, Y. (2013). Commercial building energy use in six cities in southern China. Energy Policy, 53, 76–89. [CrossRef]
  • 48. Mohsenzadeh, M., Marzbali, M. H., Tilaki, M. J. M., & Abdullah, A. (2021). Building form and energy efficiency in tropical climates: A case study of Penang, Malaysia. City Braz J Urban Manage, 13, e20200280. [CrossRef]
  • 49. Alkali, M. A., Jie, L., Dalibi, S. G., Danja, I. I., Nasir, M. H., Inuwa Labaran, U., Umar, A. M., & Adamu, K. (2021). Optimizing building orientation for reduced cooling load in Northeast Nigeria’s residential architecture. IOP Conf Ser Earth Environ Sci, 793(1), 012028. [CrossRef]
  • 50. Umbark, M. A., Alghoul, S. K., & Dekam, E. I. (2020). Energy consumption in residential buildings: Comparison between three different building styles. Sustain Dev Res, 2(1), p1. [CrossRef]
  • 51. Alvarez-Feijoo, M. Á., Orgeira-Crespo, P., Arce, E., Suárez-García, A., & Ribas, J. R. (2020). Effect of insulation on the energy demand of a standardized container facility at airports in Spain under different weather conditions. Energies, 13(20), 5263. [CrossRef]
  • 52. Tong, Y., Yang, H., Bao, L., Guo, B., Shi, Y., & Wang, C. (2022). Analysis of thermal insulation thickness for a container house in the Yanqing Zone of the Beijing 2022 Olympic and Paralympic Winter Games. Int J Environ Res Public Health, 19(24), 16417. [CrossRef]
  • 53. Wang, R., Lu, S., Zhai, X., & Feng, W. (2022). The energy performance and passive survivability of high thermal insulation buildings in future climate scenarios. Build Simul, 15(7), 1209–1225. [CrossRef]
  • 54. Arman, H. (2019). Assessment of solar shading strategies in low-income tropical housing: The case of Uganda. Proc Inst Civ Eng Eng Sustain, 172(6), 293–301. [CrossRef]
  • 55. Bazazzadeh, H., Świt-Jankowska, B., Fazeli, N., Nadolny, A., Safar Ali Najar, B., Hashemi Safaei, S. S., & Mahdavinejad, M. (2021). Efficient shading device as an important part of daylightophil architecture; a designerly framework of high-performance architecture for an office building in Tehran. Energies, 14(24), 8272. [CrossRef]
  • 56. Chandrasekaran, C., Sasidhar, K., & Madhumathi, A. (2023). Energy-efficient retrofitting with exterior shading device in hot and humid climate – case studies from fully glazed multi-storied office buildings in Chennai, India. J Asian Archit Build Eng, 22(4), 2209–2223. [CrossRef]
  • 57. Venegas, T. P., Espinosa, B. A., Cataño, F. A., & Vasco, D. A. (2023). Impact assessment of implementing several retrofitting strategies on the air-conditioning energy demand of an existing university office building in Santiago, Chile. Infrastructures, 8(4), 80. [CrossRef]
  • 58. Dunne, D. (2020). The carbon brief profile: Nigeria. Carbon Brief Ltd.
  • 59. Macrotrends. (2022). Nigeria population growth rate 1950–2024. https://www.macrotrends.net/global-metrics/countries/NGA/nigeria/population-growth-rate
  • 60. Abisuga, A. O., & Okuntade, T. F. (2020). The current state of green building development in Nigerian construction industry: Policy and implications. In Z. Gou (Ed.), Green building in developing countries: Policy, strategy and technology (pp. 129–146). Springer International Publishing. [CrossRef]
  • 61. Atanda, J. O., & Olukoya, O. A. P. (2019). Green building standards: Opportunities for Nigeria. J Clean Prod, 227, 366–377. [CrossRef]
  • 62. Chukwu, D. U., Anaele, E. A., Omeje, H. O., & Ohanu, I. B. (2019). Adopting green building constructions in developing countries through capacity building strategy: Survey of Enugu State, Nigeria. Sust Build, 4, 4. [CrossRef]

Sustainability beyond the surface: Evaluating the long-term environmental and energy performance of selected cladding materials for housing retrofits

Yıl 2024, , 221 - 238, 30.09.2024
https://doi.org/10.47481/jscmt.1536060

Öz

External walls, constituting the largest exposed surface area of the building envelope, face heightened susceptibility to environmental influences. In this study location, aesthetic con- siderations often overshadow environmental impact and comfort requirements in selecting exterior cladding materials. This paper investigates the energy performance, global warming potential, and thermal comfort aspects of carefully selected cladding materials, informed by an exhaustive literature review, for application in retrofit projects in Abuja, Nigeria. Energy con- sumption, carbon emissions, and temperature distributions were simulated using materials in a hypothetical single-floor residential building finished with cement-sand plaster. The findings show that gravel stone exhibits the most negligible environmental impact. In contrast, alumi- num and lightweight metal cladding panels contribute significantly to the embodied carbon of the building despite ranking as the most expensive materials. Insulating the test building with polyurethane boards yields substantial energy savings of up to 9% in cooling electricity, averting the need for added cladding. This study emphasizes the significance of adopting a multi-criterion approach in selecting façade cladding materials, prioritizing environmental and thermal considerations over aesthetic and cost benefits. The implications extend beyond mere emissions reduction, shedding light on the vital interplay between material choices on comfort and energy efficiency in building design.

Kaynakça

  • 1. Abusafieh, S. (2020). The conflict between aesthetics and sustainability: Empowering sustainable architecture with aesthetics to enhance people’s lifestyle and sustainable behavior. In A. Sayigh (Ed.), Renewable energy and sustainable buildings: Selected papers from the world renewable energy congress WREC 2018 (pp. 653–664). Springer. [CrossRef]
  • 2. Georgiou, M. D. (2006). An environmental guide for selecting wall cladding materials for architects [Master’s thesis, University College London]. Bartlett School of Graduate Studies, University College London.
  • 3. Abdi, M. Y., & Virányi, Z. (2010). Aesthetics in sustainability [Technical Report]. VIA University College, Denmark.
  • 4. Kupatadze, I. (2014). Ethics vs. aesthetics in sustainable architecture. WIT Trans Built Environ, 142, 553–562. [CrossRef]
  • 5. Jannat, N., Hussien, A., Abdullah, B., & Cotgrave, A. (2020). A comparative simulation study of the thermal performances of the building envelope wall materials in the tropics. Sustainability (Basel), 12(12), 4892. [CrossRef]
  • 6. Sadrolodabaee, P., Hosseini, S. A., Claramunt, J., Ardanuy, M., Haurie, L., Lacasta, A. M., & de la Fuente, A. (2022). Experimental characterization of comfort performance parameters and multi-criteria sustainability assessment of recycled textile-reinforced cement facade cladding. J Clean Prod, 356, 131900. [CrossRef]
  • 7. Toplicic-Curcic, G., Grdic, D., Ristic, N., & Grdic, Z. (2016). Ceramic facade cladding as an element of sustainable development. Facta Univ Ser Archit Civ Eng, 13(3), 219–231. [CrossRef]
  • 8. Balaji, N., Mani, M., & Reddy, B. V. (2013). Thermal performance of the building walls. Preprints of the 1st IBPSA Italy conference, Free University of Bozen-Bolzano.
  • 9. Diao, R., Sun, L., & Yang, F. (2018). Thermal performance of building wall materials in villages and towns in hot summer and cold winter zone in China. Appl Therm Eng, 128, 517–530. [CrossRef]
  • 10. Atashbar, H., & Noorzai, E. (2023). Optimization of exterior wall cladding materials for residential buildings using the non-dominated sorting genetic algorithm II (NSGAII) based on the integration of building information modeling (BIM) and life cycle assessment (LCA) for energy consumption: A case study. Sustainability, 15(21), 15647. [CrossRef]
  • 11. Taylor, C., Roy, K., Dani, A. A., Lim, J. B. P., De Silva, K., & Jones, M. (2023). Delivering sustainable housing through material choice. Sustainability, 15(4), 3331. [CrossRef]
  • 12. Bradtmueller, J. P., & Foley, S. P. (2014). Historical trends of exterior wall materials used in US residential construction. 50th ASC annual international conference proceedings, Kentucky, USA.
  • 13. Radhi, H. (2010). On the optimal selection of wall cladding system to reduce direct and indirect CO2 emissions. Energy, 35(3), 1412–1424. [CrossRef]
  • 14. Takano, A., Hughes, M., & Winter, S. (2014). A multidisciplinary approach to sustainable building material selection: A case study in a Finnish context. Build Environ, 82, 526–535. [CrossRef]
  • 15. Darwish, E. A., Eldeeb, A. S., & Midani, M. (2023). Housing retrofit for energy efficiency: Utilizing modular date palm midribs claddings to enhance indoor thermal comfort. Ain Shams Eng J, 15, 102323. [CrossRef]
  • 16. Alegbe, M., & Mtaver, G. (2023). Climate resilience and energy performance of future buildings in Nigeria based on RCP 4.5 and 8.5 scenarios. J Des Resil Arch Plan, 4(3), 354–371. [CrossRef]
  • 17. Pekdogan, T., & Basaran, T. (2017). Thermal performance of different exterior wall structures based on wall orientation. Appl Therm Eng, 112, 15–24. [CrossRef]
  • 18. Alegbe, M., Chukwuemeka, L., Lekwauwa Kalu, J., & Eke-Nwachukwu, A. (2023). Building optimisation vis-à-vis solar shading for improved comfort and energy efficiency in classrooms. Dimensi J Architect Built Environ, 50(2), 53–68. [CrossRef]
  • 19. Craig, A., Abbott, L., Laing, R., & Edge, M. (2017). Assessing the acceptability of alternative cladding materials in housing: Theoretical and methodological challenges. In Housing, space and quality of life (pp. 59–69). Routledge. [CrossRef]
  • 20. Abu Dabous, S., Ibrahim, T., Shareef, S., Mushtaha, E., & Alsyouf, I. (2022). Sustainable façade cladding selection for buildings in hot climates based on thermal performance and energy consumption. Results Eng, 16, 100643. [CrossRef]
  • 21. Dodge, B., & Liu, R. (2018). Comparing exterior wall finishes using life-cycle assessment. 7th International Building Physics Conference, IBPC 2018, Syracuse, NY, USA. [CrossRef]
  • 22. Folorunso, C., Akingbohungbe, D., & Ogunruku, M. (2017). Choice prediction factors in building exterior finishes’ selection in Lagos, Nigeria: Clients’ perspective. Int J Res Eng Soc Sci, 7(1), 14–20.
  • 23. Efthymiou, E., Cöcen, Ö. N., & Ermolli, S. R. (2010). Sustainable aluminium systems. Sustainability, 2(9), 3100–3109. [CrossRef]
  • 24. Brookes, A. J., & Meijs, M. (2008). Cladding of buildings (4th ed.). Taylor & Francis. [CrossRef]
  • 25. Grazuleviciute-Vileniske, I., Viliunas, G., & Daugelaite, A. (2021). The role of aesthetics in building sustainability assessment. Spatium, 45, 79–89. [CrossRef]
  • 26. Slaton, D. (2017). Challenges of modern materials: Assessment and repair. J Archit Conserv, 23(1-2), 47–61. [CrossRef]
  • 27. Dissanayake, D. M. K. W., Jayasinghe, C., & Jayasinghe, M. T. R. (2017). A comparative embodied energy analysis of a house with recycled expanded polystyrene (EPS) based foam concrete wall panels. Energy Build, 135, 85–94. [CrossRef]
  • 28. Ozel, M. (2011). Thermal performance and optimum insulation thickness of building walls with different structure materials. Appl Therm Eng, 31(17), 3854–3863. [CrossRef]
  • 29. Mac-Barango, D. (2017). Comparative cost analysis of wall cladding materials. Int J Econ Financ Manage, 2, 20–33.
  • 30. Mediastika, C. E., & Hariyono, J. (2017). Wall cladding effects and occupants’ perception of indoor temperature of typical student apartments in Surabaya, Indonesia. Environ Climate Technol, 20(1), 51–66. [CrossRef]
  • 31. Hill, C., Kymäläinen, M., & Rautkari, L. (2022). Review of the use of solid wood as an external cladding material in the built environment. J Mater Sci, 57(20), 9031–9076. [CrossRef]
  • 32. Metin, B., & Tavil, A. (2014). Environmental assessment of cladding construction: A case study of residential buildings. Proceedings of the 3rd International Environment and Design Congress, Istanbul, Turkey. [CrossRef]
  • 33. Hamoush, S., Abu-Lebdeh, T., Picornell, M., & Amer, S. (2011). Development of sustainable engineered stone cladding for toughness, durability, and energy conservation. Constr Build Mater, 25(10), 4006–4016. [CrossRef]
  • 34. Tiwari, R., Boháč, V., Réh, R., Lo Giudice, V., Todaro, L., Vretenár, V., Štofanik, V., & Kristak, L. (2023). Investigation of thermophysical properties of Turkey oak particleboard for sustainable building envelopes. Dev Built Environ, 16, 100228. [CrossRef]
  • 35. Zhu, Z., Jin, X., Li, Q., & Meng, Q. (2015). Experimental study on the thermal performance of ventilation wall with cladding panels in hot and humid area. Procedia Eng, 121, 410–414. [CrossRef]
  • 36. Metin, B., & Tavil, A. (2010). Sustainability of the construction process of the cladding systems. Proceedings of the ICBEST 2010-International Conference on Building Envelope Systems and Technologies, Vancouver, Canada.
  • 37. Hassinen, P., Misiek, T., & Naujoks, B. (2011). Cladding systems for sandwich panels - refurbishment of walls and roof. Eurosteel 2011 / Proceedings of the 6th European Conference on Steel and Composite Structures, Budapest, Hungary.
  • 38. Alegbe, M. (2022). Comparative analysis of wall materials toward improved thermal comfort, reduced emission, and construction cost in tropical buildings. 11th Masters Conference: People and Buildings, University of Westminster, London, United Kingdom.
  • 39. Brischke, C. (2019). Timber. In Long-term performance and durability of masonry structures (pp. 129–168). Elsevier. [CrossRef]
  • 40. Okuda, S., Corpataux, L., & Wei, K. H. (2023). Timber cladding discolouration in tropical monsoon climates. World Conference on Timber Engineering, Oslo, Norway. [CrossRef]
  • 41. Orzechowski, T., & Orzechowski, M. (2018). Optimal thickness of various insulation materials for different temperature conditions and heat sources in terms of economic aspect. J Build Phys, 41(4), 377–393. [CrossRef]
  • 42. Marshall, A., Fitton, R., Swan, W., Farmer, D., Johnston, D., Benjaber, M., & Ji, Y. (2017). Domestic building fabric performance: Closing the gap between the in situ measured and modelled performance. Energy Build, 150, 307–317. [CrossRef]
  • 43. Tayari, N., & Nikpour, M. (2023). Investigating DesignBuilder simulation software’s validation in terms of heat gain through field measured data of adjacent rooms of courtyard house. Iranica J Energy Environ, 14(1), 1–8. [CrossRef]
  • 44. Aunión-Villa, J., Gómez-Chaparro, M., & García-Sanz-Calcedo, J. (2021). Study of the energy intensity by built areas in a medium-sized Spanish hospital. Energy Effic, 14(3), 26. [CrossRef]
  • 45. Gangolells, M., Casals, M., Forcada, N., Macarulla, M., & Cuerva, E. (2016). Energy mapping of existing building stock in Spain. J Clean Prod, 112, 3895–3904. [CrossRef]
  • 46. Kong, X., Lu, S., Gao, P., Zhu, N., Wu, W., & Cao, X. (2012). Research on the energy performance and indoor environment quality of typical public buildings in the tropical areas of China. Energy Build, 48, 155–167. [CrossRef]
  • 47. Xu, P., Huang, J., Shen, P., Ma, X., Gao, X., Xu, Q., Jiang, H., & Xiang, Y. (2013). Commercial building energy use in six cities in southern China. Energy Policy, 53, 76–89. [CrossRef]
  • 48. Mohsenzadeh, M., Marzbali, M. H., Tilaki, M. J. M., & Abdullah, A. (2021). Building form and energy efficiency in tropical climates: A case study of Penang, Malaysia. City Braz J Urban Manage, 13, e20200280. [CrossRef]
  • 49. Alkali, M. A., Jie, L., Dalibi, S. G., Danja, I. I., Nasir, M. H., Inuwa Labaran, U., Umar, A. M., & Adamu, K. (2021). Optimizing building orientation for reduced cooling load in Northeast Nigeria’s residential architecture. IOP Conf Ser Earth Environ Sci, 793(1), 012028. [CrossRef]
  • 50. Umbark, M. A., Alghoul, S. K., & Dekam, E. I. (2020). Energy consumption in residential buildings: Comparison between three different building styles. Sustain Dev Res, 2(1), p1. [CrossRef]
  • 51. Alvarez-Feijoo, M. Á., Orgeira-Crespo, P., Arce, E., Suárez-García, A., & Ribas, J. R. (2020). Effect of insulation on the energy demand of a standardized container facility at airports in Spain under different weather conditions. Energies, 13(20), 5263. [CrossRef]
  • 52. Tong, Y., Yang, H., Bao, L., Guo, B., Shi, Y., & Wang, C. (2022). Analysis of thermal insulation thickness for a container house in the Yanqing Zone of the Beijing 2022 Olympic and Paralympic Winter Games. Int J Environ Res Public Health, 19(24), 16417. [CrossRef]
  • 53. Wang, R., Lu, S., Zhai, X., & Feng, W. (2022). The energy performance and passive survivability of high thermal insulation buildings in future climate scenarios. Build Simul, 15(7), 1209–1225. [CrossRef]
  • 54. Arman, H. (2019). Assessment of solar shading strategies in low-income tropical housing: The case of Uganda. Proc Inst Civ Eng Eng Sustain, 172(6), 293–301. [CrossRef]
  • 55. Bazazzadeh, H., Świt-Jankowska, B., Fazeli, N., Nadolny, A., Safar Ali Najar, B., Hashemi Safaei, S. S., & Mahdavinejad, M. (2021). Efficient shading device as an important part of daylightophil architecture; a designerly framework of high-performance architecture for an office building in Tehran. Energies, 14(24), 8272. [CrossRef]
  • 56. Chandrasekaran, C., Sasidhar, K., & Madhumathi, A. (2023). Energy-efficient retrofitting with exterior shading device in hot and humid climate – case studies from fully glazed multi-storied office buildings in Chennai, India. J Asian Archit Build Eng, 22(4), 2209–2223. [CrossRef]
  • 57. Venegas, T. P., Espinosa, B. A., Cataño, F. A., & Vasco, D. A. (2023). Impact assessment of implementing several retrofitting strategies on the air-conditioning energy demand of an existing university office building in Santiago, Chile. Infrastructures, 8(4), 80. [CrossRef]
  • 58. Dunne, D. (2020). The carbon brief profile: Nigeria. Carbon Brief Ltd.
  • 59. Macrotrends. (2022). Nigeria population growth rate 1950–2024. https://www.macrotrends.net/global-metrics/countries/NGA/nigeria/population-growth-rate
  • 60. Abisuga, A. O., & Okuntade, T. F. (2020). The current state of green building development in Nigerian construction industry: Policy and implications. In Z. Gou (Ed.), Green building in developing countries: Policy, strategy and technology (pp. 129–146). Springer International Publishing. [CrossRef]
  • 61. Atanda, J. O., & Olukoya, O. A. P. (2019). Green building standards: Opportunities for Nigeria. J Clean Prod, 227, 366–377. [CrossRef]
  • 62. Chukwu, D. U., Anaele, E. A., Omeje, H. O., & Ohanu, I. B. (2019). Adopting green building constructions in developing countries through capacity building strategy: Survey of Enugu State, Nigeria. Sust Build, 4, 4. [CrossRef]
Toplam 62 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Kirliliği ve Önlenmesi, İnşaat Yapım Mühendisliği, Yapı Malzemeleri
Bölüm Makaleler
Yazarlar

Mark Alegbe 0000-0001-8101-7995

Nasuri Hammed 0009-0005-5724-1598

Erken Görünüm Tarihi 30 Eylül 2024
Yayımlanma Tarihi 30 Eylül 2024
Gönderilme Tarihi 6 Ocak 2024
Kabul Tarihi 15 Temmuz 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Alegbe, M., & Hammed, N. (2024). Sustainability beyond the surface: Evaluating the long-term environmental and energy performance of selected cladding materials for housing retrofits. Journal of Sustainable Construction Materials and Technologies, 9(3), 221-238. https://doi.org/10.47481/jscmt.1536060

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr