Research Article
BibTex RIS Cite
Year 2018, Volume: 3 Issue: 1, 163 - 173, 31.01.2018
https://doi.org/10.29187/jscmt.2018.20

Abstract

References

  • Ahmad, A., & Hameed, B. (2010). Effect of preparation conditions of activated carbon from bamboo waste for real textile wastewater. Journal of hazardous materials, 173(1), 487-493. Biswas, D., Bose, S. K., & Hossain, M. M. (2011). Physical and mechanical properties of urea formaldehyde-bonded particleboard made from bamboo waste. International Journal of Adhesion and Adhesives, 31(2), 84-87. Chen, H., Miao, M., & Ding, X. (2009). Influence of moisture absorption on the interfacial strength of bamboo/vinyl ester composites. Composites Part A: Applied Science and Manufacturing, 40(12), 2013-2019. Chen, H., Miao, M., & Ding, X. (2011). Chemical treatments of bamboo to modify its moisture absorption and adhesion to vinyl ester resin in humid environment. Journal of composite materials, 45(14), 1533-1542. Chen, S., Zheng, Z., & Huang, P. (2011). Sustainable Development for Bamboo Industry in Anji, Zhejiang Province of China. Research Journal of Environmental Sciences, 5(3), 279. Cheng, H., & Hu, Y. (2010). Municipal solid waste (MSW) as a renewable source of energy: Current and future practices in China. Bioresource technology, 101(11), 3816-3824. Choy, K. K., Barford, J. P., & McKay, G. (2005). Production of activated carbon from bamboo scaffolding waste—process design, evaluation and sensitivity analysis. Chemical Engineering Journal, 109(1), 147-165. Corradi, S., Isidori, T., Corradi, M., Soleri, F., & Olivari, L. (2009). Composite boat hulls with bamboo natural fibres. International Journal of Materials and Product Technology, 36(1-4), 73-89. Das, M., & Chakraborty, D. (2007). Role of mercerization of the bamboo strips on the impact properties and morphology of unidirectional bamboo strips–novolac composites. Polymer composites, 28(1), 57-60. Das, M., & Chakraborty, D. (2008). Processing of the Uni-directional Powdered Phenolic Resin–Bamboo Fiber Composites and Resulting Dynamic Mechanical Properties. Journal of Reinforced Plastics andComposites. Das, M., & Chakraborty, D. (2009a). The effect of alkalization and fiber loading on the mechanical properties of bamboo fiber composites, Part 1:—Polyester resin matrix. Journal of applied polymer science, 112(1), 489-495. Das, M., & Chakraborty, D. (2009b). Effects of alkalization and fiber loading on the mechanical properties and morphology of bamboo fiber composites. II. Resol matrix. Journal of applied polymer science, 112(1), 447-453. Das, M., Prasad, V., & Chakrabarty, D. (2009). Thermogravimetric and weathering study of novolac resin composites reinforced with mercerized bamboo fiber. Polymer composites, 30(10), 1408-1416. Faruk, O., Bledzki, A. K., Fink, H.-P., & Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000–2010. Progress in polymer science, 37(11), 1552-1596. Huda, S., Reddy, N., & Yang, Y. (2012). Ultra-light-weight composites from bamboo strips and polypropylene web with exceptional flexural properties. Composites Part B: Engineering, 43(3), 1658-1664. Jain, S., Jindal, U., & Kumar, R. (1993). Development and fracture mechanism of the bamboo/polyester resin composite. Journal of materials science letters, 12(8), 558-560. Jain, S., Kumar, R., & Jindal, U. (1992). Mechanical behaviour of bamboo and bamboo composite. Journal ofmaterials science, 27(17), 4598-4604. Kumar, K., Nair, C., & Ninan, K. (2008). Effect of fiber length and composition on mechanical properties of carbon fiber‐reinforced polybenzoxazine. Polymers for Advanced Technologies, 19(7), 895-904. Kushwaha, P., & Kumar, R. (2009). Enhanced mechanical strength of BFRP composite using modified bamboos. Journal of Reinforced Plastics and Composites, 28(23), 2851-2859. La Mantia, F., & Morreale, M. (2011). Green composites: A brief review. Composites Part A: Applied Science andManufacturing, 42(6), 579-588. Li, X. (2004). Physical, chemical, and mechanical properties of bamboo and its utilization potential for fiberboardmanufacturing. Beijing Forestry University. Liu, L., Wang, Q., Cheng, L., Qian, J., & Yu, J. (2011). Modification of natural bamboo fibers for textile applications. Fibers and Polymers, 12(1), 95-103. Oka, G. M., Triwiyono, A., Awaludin, A., & Siswosukarto, S. (2014). Effects of node, internode and height position on the mechanical properties of Gigantochloa atroviolacea bamboo. Procedia Engineering, 95, 31-37. Okubo, K., & Fujii, T. (2002). Eco-composites using natural fibres and their mechanical properties. WITTransactions on The Built Environment, 59. Okubo, K., Fujii, T., & Yamamoto, Y. (2004). Development of bamboo-based polymer composites and their mechanical properties. Composites Part A: Applied Science and Manufacturing, 35(3), 377-383. Panneerdhass, R., Gnanavelbabu, A., & Rajkumar, K. (2014). Mechanical properties of luffa fiber and ground nut reinforced epoxy polymer hybrid composites. Procedia Engineering, 97, 2042-2051. Petersson, L., Kvien, I., & Oksman, K. (2007). Structure and thermal properties of poly (lactic acid)/cellulose whiskers nanocomposite materials. Composites Science and Technology, 67(11), 2535-2544. Qi, J., Xie, J., Yu, W., & Chen, S. (2015). Effects of characteristic inhomogeneity of bamboo culm nodes on mechanical properties of bamboo fiber reinforced composite. Journal of Forestry Research, 26(4), 1057-1060. Ray, A. K., Mondal, S., Das, S. K., & Ramachandrarao, P. (2005). Bamboo—a functionally graded composite-correlation between microstructure and mechanical strength. Journal of materials science, 40(19), 5249-5253. Samuel, O. D., Agbo, S., & Adekanye, T. A. (2012). Assessing mechanical properties of natural fibre reinforced composites for engineering applications. Journal of Minerals and Materials Characterization andEngineering, 11(08), 780. Scurlock, J., Dayton, D., & Hames, B. (2000). Bamboo: An overlooked biomass resource? Biomass and bioenergy,19(4), 229-244. Shao, Z., Zhou, L., Liu, Y., Wu, Z., & Arnaud, C. (2010). Differences in structure and strength between internode and node sections of moso bamboo. Journal of Tropical Forest Science, 133-138. Srinivasa, C., & Bharath, K. (2013). Effect of alkali treatment on impact behavior of areca fibers reinforced polymer composites. fiber composites, 1(2), 8. Taijun, C., & Gangyi, L. (2005). Development of Textiles Made from Bamboo Fiber and its Prospect, J. HunanLiberal Art Sci. College (Natural Sci. Ed.), 17(1), 57-59. Taylor, D., Kinane, B., Sweeney, C., Sweetnam, D., O’Reilly, P., & Duan, K. (2015). The biomechanics of bamboo: investigating the role of the nodes. Wood science and technology, 49(2), 345-357. Van Vuure, A., Osorio, L., Trujillo, E., Fuentes, C., & Verpoest, I. (2009). Long bamboo fibre composites. Paper presented at the Proceedings of the ICCM. Wahab, R., Mohamed, A., Mustafa, M., & Hassan, A. (2009). Physical characteristics and anatomical properties of cultivated bamboo (Bambusa vulgaris Schrad.) culms. Journal of Biological Sciences, 9(7), 753-759. Yan, L., Chouw, N., & Jayaraman, K. (2014). Flax fibre and its composites–a review. Composites Part B:Engineering, 56, 296-317. Yao, F., Wu, Q., Lei, Y., Guo, W., & Xu, Y. (2008). Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polymer Degradation and Stability, 93(1), 90-98. Yasmin, A., & Daniel, I. M. (2004). Mechanical and thermal properties of graphite platelet/epoxy composites. Polymer, 45(24), 8211-8219. Yuan, H., & Shen, L. (2011). Trend of the research on construction and demolition waste management. Wastemanagement, 31(4), 670-679. Zhang, D. Q., Tan, S. K., & Gersberg, R. M. (2010). Municipal solid waste management in China: status, problems and challenges. Journal of Environmental Management, 91(8), 1623-1633. Zhang, Y.-J., Xing, Z.-J., Duan, Z.-K., Li, M., & Wang, Y. (2014). Effects of steam activation on the pore structure and surface chemistry of activated carbon derived from bamboo waste. Applied Surface Science, 315, 279-

Characterization of Waste Bamboo Strips Underscoring Node Effects

Year 2018, Volume: 3 Issue: 1, 163 - 173, 31.01.2018
https://doi.org/10.29187/jscmt.2018.20

Abstract

Bamboo waste, a type of solid waste, is often thrown away ignorantly as non-usable hard waste or for combustion, whereas still it could be a good source of raw materials for structural composites. The purpose of this research is to extract and characterize the strips of internodes (only) and strips along with nodes of bamboo waste from composite perspective in order to seek their suitability for prospective composite applications. Strips of bamboo waste were collected from bamboo mats, and their morphological structure, mechanical properties (tensile strength, compression, flexural, and impact testing) and thermal properties were observed. It is found that three of the mechanical properties such as, tensile, compression, impact test results as well as thermal properties of strips bamboo waste are comparable to virgin materials and far better than many other bio fibers like, alifa, coir, feather, pineapple etc. Resembling the fresh material, the node portion is somewhat inferior to internode because of structural variations. The characterized properties also reveal that the waste bamboo can be used as a potential reinforcement material for some composite applications.

References

  • Ahmad, A., & Hameed, B. (2010). Effect of preparation conditions of activated carbon from bamboo waste for real textile wastewater. Journal of hazardous materials, 173(1), 487-493. Biswas, D., Bose, S. K., & Hossain, M. M. (2011). Physical and mechanical properties of urea formaldehyde-bonded particleboard made from bamboo waste. International Journal of Adhesion and Adhesives, 31(2), 84-87. Chen, H., Miao, M., & Ding, X. (2009). Influence of moisture absorption on the interfacial strength of bamboo/vinyl ester composites. Composites Part A: Applied Science and Manufacturing, 40(12), 2013-2019. Chen, H., Miao, M., & Ding, X. (2011). Chemical treatments of bamboo to modify its moisture absorption and adhesion to vinyl ester resin in humid environment. Journal of composite materials, 45(14), 1533-1542. Chen, S., Zheng, Z., & Huang, P. (2011). Sustainable Development for Bamboo Industry in Anji, Zhejiang Province of China. Research Journal of Environmental Sciences, 5(3), 279. Cheng, H., & Hu, Y. (2010). Municipal solid waste (MSW) as a renewable source of energy: Current and future practices in China. Bioresource technology, 101(11), 3816-3824. Choy, K. K., Barford, J. P., & McKay, G. (2005). Production of activated carbon from bamboo scaffolding waste—process design, evaluation and sensitivity analysis. Chemical Engineering Journal, 109(1), 147-165. Corradi, S., Isidori, T., Corradi, M., Soleri, F., & Olivari, L. (2009). Composite boat hulls with bamboo natural fibres. International Journal of Materials and Product Technology, 36(1-4), 73-89. Das, M., & Chakraborty, D. (2007). Role of mercerization of the bamboo strips on the impact properties and morphology of unidirectional bamboo strips–novolac composites. Polymer composites, 28(1), 57-60. Das, M., & Chakraborty, D. (2008). Processing of the Uni-directional Powdered Phenolic Resin–Bamboo Fiber Composites and Resulting Dynamic Mechanical Properties. Journal of Reinforced Plastics andComposites. Das, M., & Chakraborty, D. (2009a). The effect of alkalization and fiber loading on the mechanical properties of bamboo fiber composites, Part 1:—Polyester resin matrix. Journal of applied polymer science, 112(1), 489-495. Das, M., & Chakraborty, D. (2009b). Effects of alkalization and fiber loading on the mechanical properties and morphology of bamboo fiber composites. II. Resol matrix. Journal of applied polymer science, 112(1), 447-453. Das, M., Prasad, V., & Chakrabarty, D. (2009). Thermogravimetric and weathering study of novolac resin composites reinforced with mercerized bamboo fiber. Polymer composites, 30(10), 1408-1416. Faruk, O., Bledzki, A. K., Fink, H.-P., & Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000–2010. Progress in polymer science, 37(11), 1552-1596. Huda, S., Reddy, N., & Yang, Y. (2012). Ultra-light-weight composites from bamboo strips and polypropylene web with exceptional flexural properties. Composites Part B: Engineering, 43(3), 1658-1664. Jain, S., Jindal, U., & Kumar, R. (1993). Development and fracture mechanism of the bamboo/polyester resin composite. Journal of materials science letters, 12(8), 558-560. Jain, S., Kumar, R., & Jindal, U. (1992). Mechanical behaviour of bamboo and bamboo composite. Journal ofmaterials science, 27(17), 4598-4604. Kumar, K., Nair, C., & Ninan, K. (2008). Effect of fiber length and composition on mechanical properties of carbon fiber‐reinforced polybenzoxazine. Polymers for Advanced Technologies, 19(7), 895-904. Kushwaha, P., & Kumar, R. (2009). Enhanced mechanical strength of BFRP composite using modified bamboos. Journal of Reinforced Plastics and Composites, 28(23), 2851-2859. La Mantia, F., & Morreale, M. (2011). Green composites: A brief review. Composites Part A: Applied Science andManufacturing, 42(6), 579-588. Li, X. (2004). Physical, chemical, and mechanical properties of bamboo and its utilization potential for fiberboardmanufacturing. Beijing Forestry University. Liu, L., Wang, Q., Cheng, L., Qian, J., & Yu, J. (2011). Modification of natural bamboo fibers for textile applications. Fibers and Polymers, 12(1), 95-103. Oka, G. M., Triwiyono, A., Awaludin, A., & Siswosukarto, S. (2014). Effects of node, internode and height position on the mechanical properties of Gigantochloa atroviolacea bamboo. Procedia Engineering, 95, 31-37. Okubo, K., & Fujii, T. (2002). Eco-composites using natural fibres and their mechanical properties. WITTransactions on The Built Environment, 59. Okubo, K., Fujii, T., & Yamamoto, Y. (2004). Development of bamboo-based polymer composites and their mechanical properties. Composites Part A: Applied Science and Manufacturing, 35(3), 377-383. Panneerdhass, R., Gnanavelbabu, A., & Rajkumar, K. (2014). Mechanical properties of luffa fiber and ground nut reinforced epoxy polymer hybrid composites. Procedia Engineering, 97, 2042-2051. Petersson, L., Kvien, I., & Oksman, K. (2007). Structure and thermal properties of poly (lactic acid)/cellulose whiskers nanocomposite materials. Composites Science and Technology, 67(11), 2535-2544. Qi, J., Xie, J., Yu, W., & Chen, S. (2015). Effects of characteristic inhomogeneity of bamboo culm nodes on mechanical properties of bamboo fiber reinforced composite. Journal of Forestry Research, 26(4), 1057-1060. Ray, A. K., Mondal, S., Das, S. K., & Ramachandrarao, P. (2005). Bamboo—a functionally graded composite-correlation between microstructure and mechanical strength. Journal of materials science, 40(19), 5249-5253. Samuel, O. D., Agbo, S., & Adekanye, T. A. (2012). Assessing mechanical properties of natural fibre reinforced composites for engineering applications. Journal of Minerals and Materials Characterization andEngineering, 11(08), 780. Scurlock, J., Dayton, D., & Hames, B. (2000). Bamboo: An overlooked biomass resource? Biomass and bioenergy,19(4), 229-244. Shao, Z., Zhou, L., Liu, Y., Wu, Z., & Arnaud, C. (2010). Differences in structure and strength between internode and node sections of moso bamboo. Journal of Tropical Forest Science, 133-138. Srinivasa, C., & Bharath, K. (2013). Effect of alkali treatment on impact behavior of areca fibers reinforced polymer composites. fiber composites, 1(2), 8. Taijun, C., & Gangyi, L. (2005). Development of Textiles Made from Bamboo Fiber and its Prospect, J. HunanLiberal Art Sci. College (Natural Sci. Ed.), 17(1), 57-59. Taylor, D., Kinane, B., Sweeney, C., Sweetnam, D., O’Reilly, P., & Duan, K. (2015). The biomechanics of bamboo: investigating the role of the nodes. Wood science and technology, 49(2), 345-357. Van Vuure, A., Osorio, L., Trujillo, E., Fuentes, C., & Verpoest, I. (2009). Long bamboo fibre composites. Paper presented at the Proceedings of the ICCM. Wahab, R., Mohamed, A., Mustafa, M., & Hassan, A. (2009). Physical characteristics and anatomical properties of cultivated bamboo (Bambusa vulgaris Schrad.) culms. Journal of Biological Sciences, 9(7), 753-759. Yan, L., Chouw, N., & Jayaraman, K. (2014). Flax fibre and its composites–a review. Composites Part B:Engineering, 56, 296-317. Yao, F., Wu, Q., Lei, Y., Guo, W., & Xu, Y. (2008). Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polymer Degradation and Stability, 93(1), 90-98. Yasmin, A., & Daniel, I. M. (2004). Mechanical and thermal properties of graphite platelet/epoxy composites. Polymer, 45(24), 8211-8219. Yuan, H., & Shen, L. (2011). Trend of the research on construction and demolition waste management. Wastemanagement, 31(4), 670-679. Zhang, D. Q., Tan, S. K., & Gersberg, R. M. (2010). Municipal solid waste management in China: status, problems and challenges. Journal of Environmental Management, 91(8), 1623-1633. Zhang, Y.-J., Xing, Z.-J., Duan, Z.-K., Li, M., & Wang, Y. (2014). Effects of steam activation on the pore structure and surface chemistry of activated carbon derived from bamboo waste. Applied Surface Science, 315, 279-
There are 1 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Research Articles
Authors

Mohammad İrfan Iqbal This is me

S. M. Fijul Kabir This is me

Mohammad Abu Nasir Rakib This is me

Mohammad Mamunur Rashid This is me

Partha Pratim Sikdar This is me

Publication Date January 31, 2018
Submission Date June 17, 2017
Acceptance Date August 14, 2017
Published in Issue Year 2018 Volume: 3 Issue: 1

Cite

APA Iqbal, M. İ., Kabir, S. M. F., Rakib, M. A. N., Rashid, M. M., et al. (2018). Characterization of Waste Bamboo Strips Underscoring Node Effects. Journal of Sustainable Construction Materials and Technologies, 3(1), 163-173. https://doi.org/10.29187/jscmt.2018.20

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr