Araştırma Makalesi
BibTex RIS Kaynak Göster

An Evaluation of Vertical Dynamic Stress Attenuation for Compacted Coarse-Grained Soils

Yıl 2022, Cilt: 7 Sayı: 3, 172 - 183, 30.09.2022
https://doi.org/10.47481/jscmt.1142438

Öz

Coarse-grained soil (CGS), as a filler with the characteristics of high bearing capacity but difficult compaction for embankment construction, requires an appropriate thickness of a single compaction layer according to the influence depth of vertical dynamic stress. In this paper, a numerical analysis using PFC2D was conducted by following a scale model test with different particle gradations of compacted CGS fillers by adopting a modified PFWD. The results show that the influence depth is about 50 cm under the impact maximum stress 0.066 MPa if defined the depth as the maximum stress attenuation to 20%. The compacted CGS filler with the dense particle gradation and high strength has a rapid attenuation on vertical dynamic stress. Meanwhile, with the increase of stone content (P5, particle size ≥5 mm), the vertical dynamic stress of compacted CGS is attenuated exponentially. The maximum particle size also affects the attenuation of vertical dynamic stress, which needs further research. The findings support the development of non-destructive devices to rapidly inspect the compactness of subgrade construction.

Destekleyen Kurum

The Transport Science and Technology Progress Program of Anhui Province & Research Program of Anhui Communications Holding Group

Proje Numarası

2018-029 & JKKJ-2018-13

Kaynakça

  • ASTM (1990)D422-63 Particle-Size Analysis of Soils.
  • ASTM (1993)D4602-93 Nondestructive Testing of Pavements Using Cyclic-Loading Dynamic Deflection Equipment.
  • ASTM (1996)D4965-96 General Pavements Deflection Measurements.
  • Bagherzadeh-Khalkhali, A. & Mirghasemi, A. A. (2009) Numerical and Experimental Direct Shear Tests for Coarse-Grained Soils. Particuology 7:83-91. DOI: 10.1016/j.partic.2008.11.006
  • Cheng, D., Zhiping, Y., Zhiyong, L. & Wuming, L. (2012) Design of Subgrade Resilient Modulus Based on Coordinate Deformation of Subgrade and Pavement. Journal of Highway and Transportation Research and Development 29(1):38-42,69. DOI: 10.3969/j.issn.1002-0268.2012.01.007
  • Dong, Y. & Chai, H. (2006) Study on Engineering Classification of Soil-Rock Mixture. Subgrade Engineering (3):38-41. DOI: 10.3969/j.issn.1003-8825.2006.03.015
  • El-Raof, H. S. A., Ragaa T. Abd El-Hakim, P. D., Sherif M. El-Badawy, P. D. & Hafez A. Afify, P. D. (2018) Simplified Closed-Form Procedure for Network-Level Determination of Pavement Layer Moduli from Falling Weight Deflectometer Data. J. Transp. Eng(ASCE) 144(4):04018052. DOI: 10.1061/JPEODX.0000080
  • Elbagalati, O., Elseifi, M., Gaspard, K. & Zhang, Z. (2018) Development of the Pavement Structural Health Index Based on Falling Weight Deflectometer Testing. International Journal of Pavement Engineering 19(1):1-8. DOI: 10.1080/10298436.2016.1149838
  • Fei, M., Jia-Sheng, Z., Xiao-Bin, C. & Qi-Yun, W. (2014) Deformation Characteristics of Coarse-Grained Soil with Various Gradations. J. Cent. South Univ. 21:2469−2476.
  • Feng, Z. & Zhang, Y. (2004) Compaction Test of Coarse-Grained Soil Subgrade. Journal of Chang’an University(Natural Science Edition) 24(3):9-12. DOI: 10.3321/j.issn:1671-8879.2004.03.003
  • Fu, G., Zhao, Y., Zhou, C. & Liu, W. (2020) Determination of Effective Frequency Range Excited by Falling Weight Deflectometer Loading History for Asphalt Pavement. Construction and Building Materials 235(117792):1-9. DOI: 10.1016/j.conbuildmat.2019.117792
  • George, V. & Kumar, A. (2017) Effect of Soil Parameters on Modulus of Resilience Based on Portable Falling Weight Deflectometer Tests on Lateritic Sub-Grade Soils. International Journal of Geotechnical Engineering:1-8. DOI: 10.1080/19386362.2017.1403075
  • Huang, S., Wang, S., Xu, C., Shi, Y. & Ye, F. (2019) Effect of Grain Gradation on the Permeability Characteristics of Coarse-Grained Soil Conditioned with Foam for EPB Shield Tunneling. KSCE Journal of Civil Engineering 23(11):4662-4674. DOI: 10.1016/ 10.1007/s12205-019-0717-7
  • Jiang, M., Zhu, J. & He, S. (2019) Experimental Study on Influence of Initial Relative Density on K0 of Coarse Grained Soil. Advanced Engineering Sciences 51(4):69-74. DOI: 10.11779/CJGE2017S1003
  • Kotrocz, K., Mouazen, A. M. & Kerényi, G. (2016) Numerical Simulation of Soil–Cone Penetrometer Interaction using Discrete Element Method. Computers and Electronics in Agriculture 125:63-73. DOI: 10.1016/j.compag.2016.04.023
  • Kouakou, N. M., Cuisinier, O. & Masrouri, F. (2020) Estimation of the Shear Strength of Coarse-Grained Soils with Fine Particles. Transportation Geotechnics 25(100407):1-10. DOI: /10.1016/j.trgeo.2020.100407
  • Li, C., Ashlock, J. C., Lin, S. & Vennapusa, P. K. R. (2018) In Situ Modulus Reduction Characteristics of Stabilized Pavement Foundations by Multichannel Analysis of Surface Waves and Falling Weight Deflectometer Tests. Construction and Building Materials 188:809-819. DOI: 10.1016/j.conbuildmat.2018.08.163
  • Ling, H., Fu, H. & Han, H.-Q. (2017) Experimental Study on Effects of Gradation on Strength and Deformation of Coarse-Grained Soil. Chinese Journal of Geotechnical Engineering 39(Supp. 1):12-16. DOI: 10.15961/j.jsuese.201800678
  • Liu, M., Luo, Q., Guo, J. & Lian, J. (2017) Experiment on Seepage Deformation of the Transitional Coarse-Grained Soil and Criterion of Failure Type. Chinese Journal of Rock Mechanics and Engineering 36(12):3102-3110. DOI: 10.13722/j.cnki.jrme.2017.0431
  • Meng, F., Zhang, J.-S., Chen, X.-B. & Wang, Q.-Y. (2014) Deformation Characteristics of Coarse-Grained Soil with Various Gradations. J. Cent. South Univ. 21:2469−2476. DOI: 10.1007/s11771-014-2201-3
  • Qin, Y. (2013) Laboratory Full-Scale Experimental Study on Construction Technology of Soil-Rock Mixed Filling Subgrade. Journal of China & Foreign Highway 33(3). 39-43. DOI: 10.3969/j.issn.1671-2579.2013.03.011
  • Shahien, M. M. & Farouk, A. (2013) Estimation of Deformation Modulus of Gravelly Soils Using Dynamic Cone Penetration Tests. Ain Shams Engineering Journal 4:633-640. DOI:10.1016/j.asej.2013.01.008
  • Wu, E.-L., Zhu, J.-G., Chen, G., Bao, M.-D. & Guo, W.-L. (2020a) Gradation Equation of Coarse-Grained Soil and its Applicability. J. Cent. South Univ. 27:911-919. DOI: 10.1007/s11771-020-4340-z
  • Wu, E., Zhu, J., Guo, W. & Zhang, Z. (2020b) Effect of Gradation on the Compactability of Coarse-Grained Soils. KSCE Journal of Civil Engineering 24(2):356-364. DOI: 10.1007/s12205-020-1936-7
  • Zhang, G., Zhou, J. & Yao, Z. (2007) Study on Mesomechnical Simulation of Piping with Model Test and PFC2D. Hydrogeology Engineering Geology(6):83-86. DOI: 10.3969/j.issn.1000-3665.2007.06.020
  • Zhu, J.-G., Guo, W.-L., Wen, Y.-F., Yin, J.-H. & Zhou, C. (2018) New Gradation Equation and Applicability for Particle-Size Distributions of Various Soils. Int. J. Geomech. 18(2):04017155. DOI: 10.1061/(ASCE)GM.1943-5622.0001082
Yıl 2022, Cilt: 7 Sayı: 3, 172 - 183, 30.09.2022
https://doi.org/10.47481/jscmt.1142438

Öz

Proje Numarası

2018-029 & JKKJ-2018-13

Kaynakça

  • ASTM (1990)D422-63 Particle-Size Analysis of Soils.
  • ASTM (1993)D4602-93 Nondestructive Testing of Pavements Using Cyclic-Loading Dynamic Deflection Equipment.
  • ASTM (1996)D4965-96 General Pavements Deflection Measurements.
  • Bagherzadeh-Khalkhali, A. & Mirghasemi, A. A. (2009) Numerical and Experimental Direct Shear Tests for Coarse-Grained Soils. Particuology 7:83-91. DOI: 10.1016/j.partic.2008.11.006
  • Cheng, D., Zhiping, Y., Zhiyong, L. & Wuming, L. (2012) Design of Subgrade Resilient Modulus Based on Coordinate Deformation of Subgrade and Pavement. Journal of Highway and Transportation Research and Development 29(1):38-42,69. DOI: 10.3969/j.issn.1002-0268.2012.01.007
  • Dong, Y. & Chai, H. (2006) Study on Engineering Classification of Soil-Rock Mixture. Subgrade Engineering (3):38-41. DOI: 10.3969/j.issn.1003-8825.2006.03.015
  • El-Raof, H. S. A., Ragaa T. Abd El-Hakim, P. D., Sherif M. El-Badawy, P. D. & Hafez A. Afify, P. D. (2018) Simplified Closed-Form Procedure for Network-Level Determination of Pavement Layer Moduli from Falling Weight Deflectometer Data. J. Transp. Eng(ASCE) 144(4):04018052. DOI: 10.1061/JPEODX.0000080
  • Elbagalati, O., Elseifi, M., Gaspard, K. & Zhang, Z. (2018) Development of the Pavement Structural Health Index Based on Falling Weight Deflectometer Testing. International Journal of Pavement Engineering 19(1):1-8. DOI: 10.1080/10298436.2016.1149838
  • Fei, M., Jia-Sheng, Z., Xiao-Bin, C. & Qi-Yun, W. (2014) Deformation Characteristics of Coarse-Grained Soil with Various Gradations. J. Cent. South Univ. 21:2469−2476.
  • Feng, Z. & Zhang, Y. (2004) Compaction Test of Coarse-Grained Soil Subgrade. Journal of Chang’an University(Natural Science Edition) 24(3):9-12. DOI: 10.3321/j.issn:1671-8879.2004.03.003
  • Fu, G., Zhao, Y., Zhou, C. & Liu, W. (2020) Determination of Effective Frequency Range Excited by Falling Weight Deflectometer Loading History for Asphalt Pavement. Construction and Building Materials 235(117792):1-9. DOI: 10.1016/j.conbuildmat.2019.117792
  • George, V. & Kumar, A. (2017) Effect of Soil Parameters on Modulus of Resilience Based on Portable Falling Weight Deflectometer Tests on Lateritic Sub-Grade Soils. International Journal of Geotechnical Engineering:1-8. DOI: 10.1080/19386362.2017.1403075
  • Huang, S., Wang, S., Xu, C., Shi, Y. & Ye, F. (2019) Effect of Grain Gradation on the Permeability Characteristics of Coarse-Grained Soil Conditioned with Foam for EPB Shield Tunneling. KSCE Journal of Civil Engineering 23(11):4662-4674. DOI: 10.1016/ 10.1007/s12205-019-0717-7
  • Jiang, M., Zhu, J. & He, S. (2019) Experimental Study on Influence of Initial Relative Density on K0 of Coarse Grained Soil. Advanced Engineering Sciences 51(4):69-74. DOI: 10.11779/CJGE2017S1003
  • Kotrocz, K., Mouazen, A. M. & Kerényi, G. (2016) Numerical Simulation of Soil–Cone Penetrometer Interaction using Discrete Element Method. Computers and Electronics in Agriculture 125:63-73. DOI: 10.1016/j.compag.2016.04.023
  • Kouakou, N. M., Cuisinier, O. & Masrouri, F. (2020) Estimation of the Shear Strength of Coarse-Grained Soils with Fine Particles. Transportation Geotechnics 25(100407):1-10. DOI: /10.1016/j.trgeo.2020.100407
  • Li, C., Ashlock, J. C., Lin, S. & Vennapusa, P. K. R. (2018) In Situ Modulus Reduction Characteristics of Stabilized Pavement Foundations by Multichannel Analysis of Surface Waves and Falling Weight Deflectometer Tests. Construction and Building Materials 188:809-819. DOI: 10.1016/j.conbuildmat.2018.08.163
  • Ling, H., Fu, H. & Han, H.-Q. (2017) Experimental Study on Effects of Gradation on Strength and Deformation of Coarse-Grained Soil. Chinese Journal of Geotechnical Engineering 39(Supp. 1):12-16. DOI: 10.15961/j.jsuese.201800678
  • Liu, M., Luo, Q., Guo, J. & Lian, J. (2017) Experiment on Seepage Deformation of the Transitional Coarse-Grained Soil and Criterion of Failure Type. Chinese Journal of Rock Mechanics and Engineering 36(12):3102-3110. DOI: 10.13722/j.cnki.jrme.2017.0431
  • Meng, F., Zhang, J.-S., Chen, X.-B. & Wang, Q.-Y. (2014) Deformation Characteristics of Coarse-Grained Soil with Various Gradations. J. Cent. South Univ. 21:2469−2476. DOI: 10.1007/s11771-014-2201-3
  • Qin, Y. (2013) Laboratory Full-Scale Experimental Study on Construction Technology of Soil-Rock Mixed Filling Subgrade. Journal of China & Foreign Highway 33(3). 39-43. DOI: 10.3969/j.issn.1671-2579.2013.03.011
  • Shahien, M. M. & Farouk, A. (2013) Estimation of Deformation Modulus of Gravelly Soils Using Dynamic Cone Penetration Tests. Ain Shams Engineering Journal 4:633-640. DOI:10.1016/j.asej.2013.01.008
  • Wu, E.-L., Zhu, J.-G., Chen, G., Bao, M.-D. & Guo, W.-L. (2020a) Gradation Equation of Coarse-Grained Soil and its Applicability. J. Cent. South Univ. 27:911-919. DOI: 10.1007/s11771-020-4340-z
  • Wu, E., Zhu, J., Guo, W. & Zhang, Z. (2020b) Effect of Gradation on the Compactability of Coarse-Grained Soils. KSCE Journal of Civil Engineering 24(2):356-364. DOI: 10.1007/s12205-020-1936-7
  • Zhang, G., Zhou, J. & Yao, Z. (2007) Study on Mesomechnical Simulation of Piping with Model Test and PFC2D. Hydrogeology Engineering Geology(6):83-86. DOI: 10.3969/j.issn.1000-3665.2007.06.020
  • Zhu, J.-G., Guo, W.-L., Wen, Y.-F., Yin, J.-H. & Zhou, C. (2018) New Gradation Equation and Applicability for Particle-Size Distributions of Various Soils. Int. J. Geomech. 18(2):04017155. DOI: 10.1061/(ASCE)GM.1943-5622.0001082
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Mühendisliği
Bölüm Makaleler
Yazarlar

Kuangbiao Sun Bu kişi benim 0000-0002-1884-5867

Mingjing Fang 0000-0002-2247-9652

Donglin Shu Bu kişi benim 0000-0001-7324-8283

Yang Pu Bu kişi benim 0000-0002-0551-8226

Wenbing Wang Bu kişi benim 0000-0002-4181-9413

Proje Numarası 2018-029 & JKKJ-2018-13
Yayımlanma Tarihi 30 Eylül 2022
Gönderilme Tarihi 8 Temmuz 2022
Kabul Tarihi 21 Ağustos 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 7 Sayı: 3

Kaynak Göster

APA Sun, K., Fang, M., Shu, D., Pu, Y., vd. (2022). An Evaluation of Vertical Dynamic Stress Attenuation for Compacted Coarse-Grained Soils. Journal of Sustainable Construction Materials and Technologies, 7(3), 172-183. https://doi.org/10.47481/jscmt.1142438

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr