Research Article
BibTex RIS Cite
Year 2024, Volume: 9 Issue: 3, 255 - 267, 30.09.2024
https://doi.org/10.47481/jscmt.1555168

Abstract

References

  • 1. Schneider, M., Romer, M., Tschudin, M., & Bolio, H. (2011). Sustainable cement production present and future. Cem Concr Res, 41, 642–650. [CrossRef]
  • 2. Benhelal, E., Zahedi, G., Shamsaei, E., & Bahadori, A. (2013). Global strategies and potentials to curb CO2 emissions in cement industry. J Clean Prod, 51, 142–161. [CrossRef]
  • 3. He, Z., Zhu, X., Wang, J., Mu, M., & Wang, Y. (2019). Comparison of CO2 emissions from O.P.C. and recycled cement production. Constr Build Mater, 211, 965–973. [CrossRef]
  • 4. Çelik, Z. (2023). Investigation of the use of ground raw vermiculite as a supplementary cement materials in self-compacting mortars: Comparison with class C fly ash. J Build Eng, 65, 105745. [CrossRef]
  • 5. Gartner, E. (2004). Industrially interesting approaches to “low-CO2” cements. Cem Concr Res, 34, 1489–1498. [CrossRef]
  • 6. Zakka, W. P., Lim, N. H. A. S., & Khun, M. C. (2021). A scientometric review of geopolymer concrete. J Clean Prod, 280, 124353. [CrossRef]
  • 7. Bellum, R. R., Muniraj, K., Indukuri, C. S. R., & Madduru, S. R. C. (2020). Investigation on performance enhancement of fly ash-GGBFS based graphene geopolymer concrete. J Build Eng, 32, 101659. [CrossRef]
  • 8. Prud'homme, E., Michaud, E., Joussein, S., & Rossignol, S. (2012). Influence of raw materials and potassium and silicon concentrations on the formation of a zeolite phase in a geopolymer network during thermal treatment. J Non-Cryst Solids, 358, 1908–1916. [CrossRef]
  • 9. Sahin, F., Uysal, M., Canpolat, O., Cosgun, T., & Dehghanpour, H. (2021). The effect of polyvinyl fibers on metakaolin-based geopolymer mortars with different aggregate filling. Constr Build Mater, 300, 124257. [CrossRef]
  • 10. Mehta, A., & Siddique, R. (2016). An overview of geopolymers derived from industrial by-products. Constr Build Mater, 127, 183–198. [CrossRef]
  • 11. Lin, H., Liu, H., Li, Y., & Kong, X. (2021). Properties and reaction mechanism of phosphoric acid activated metakaolin geopolymer at varied curing temperatures. Cem Concr Res, 144, 106425. [CrossRef]
  • 12. Masi, G., Rickard, W. D. A., Bignozzi, M. C., & Van Riessen, A. (2015). The effect of organic and inorganic fibres on the mechanical and thermal properties of aluminate activated geopolymers. Compos Part B Eng, 76, 218–228. [CrossRef]
  • 13. Wu, Y., Lu, B., Bai, T., Wang, H., Du, F., Zhang, Y., Cai, L., Jiang, C., & Wang, W. (2019). Geopolymer, green alkali activated cementitious material: Synthesis, applications and challenges. Constr Build Mater, 224, 930–949. [CrossRef]
  • 14. Bai, T., Song, Z., Wang, H., Wu, Y., & Huang, W. (2019). Performance evaluation of metakaolin geopolymer modified by different solid wastes. J Clean Prod, 226, 114–121. [CrossRef]
  • 15. Yang, K. H., Song, J. K., & Song, K. I. (2013). Assessment of CO2 reduction of alkali-activated concrete. J Clean Prod, 39, 265–272. [CrossRef]
  • 16. Yang, T., Han, E., Wang, X., & Wu, D. (2017). Surface decoration of polyimide fiber with carbon nanotubes and its application for mechanical enhancement of phosphoric acid-based geopolymers. Appl Surf Sci, 416, 200–212. [CrossRef]
  • 17. Qaidi, S. M. A., Atrushi, D. S., Mohammed, A. S., Ahmed, H. U., Faraj, R. H., Emad, W., Tayeh, B. A., & Najm, H. M. (2022). Ultra-high-performance geopolymer concrete: A review. Constr Build Mater, 346, 128495. [CrossRef]
  • 18. Ismail, I., Bernal, S. A., Provis, J. L., San Nicolas, R., Hamdan, S., & van Deventer, J. S. J. (2014). Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cem Concr Compos, 45, 125–135. [CrossRef]
  • 19. Gao, X., Yu, Q. L., & Brouwers, H. J. H. (2015). Reaction kinetics, gel character and strength of ambient temperature cured alkali activated slag–fly ash blends. Constr Build Mater, 80, 105–115. [CrossRef]
  • 20. Omur, T., Miyan, N., Kabay, N., Birol, B., & Oktay, D. (2023). Characterization of ferrochrome ash and blast furnace slag based alkali-activated paste and mortar. Constr Build Mater, 363, 129805. [CrossRef]
  • 21. Zhang, H. Y., Qiu, G. H., Kodur, V., & Yuan, Z. S. (2020). Spalling behavior of metakaolin-fly ash based geopolymer concrete under elevated temperature exposure. Cem Concr Compos, 106, 103483. [CrossRef]
  • 22. Mendes, A., Sanjayan, J. G., Gates, W. P., & Collins, F. (2012). The influence of water absorption and porosity on the deterioration of cement paste and concrete exposed to elevated temperatures, as in a fire event. Cem Concr Compos, 34, 1067–1074. [CrossRef]
  • 23. Kuri, J. C., Majhi, S., Sarker, P. K., & Mukherjee, A. (2021). Microstructural and non-destructive investigation of the effect of high temperature exposure on ground ferronickel slag blended fly ash geopolymer mortars. J Build Eng, 43, 103099. [CrossRef]
  • 24. Davidovits, J. (1991). Geopolymers: inorganic polymeric new materials. J Therm Anal Calorim, 37, 1633–1656. [CrossRef]
  • 25. Kong, D. L. Y., & Sanjayan, J. G. (2010). Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cem Concr Res, 40, 334–339. [CrossRef]
  • 26. Lemougna, P. N., Adediran, A., Yliniemi, J., Ismailov, A., Levanen, E., Tanskanen, P., Kinnunen, P., Roning, J., & Illikainen, M. (2020). Thermal stability of one-part metakaolin geopolymer composites containing high volume of spodumene tailings and glass wool. Cem Concr Compos, 114, 103792. [CrossRef]
  • 27. Pan, Z., Tao, Z., Cao, Y. F., Wuhrer, R., & Murphy, T. (2018). Compressive strength and microstructure of alkali-activated fly ash/slag binders at high temperature. Cem Concr Compos, 86, 9–18. [CrossRef]
  • 28. Guerrieri, M., Sanjayan, J., & Collins, F. (2010). Residual strength properties of sodium silicate alkali activated slag paste exposed to elevated temperatures. Mater Struct, 43, 765–773. [CrossRef]
  • 29. Türker, H. T., Balçikanli, M., Durmuş, İ. H., Özbay, E., & Erdemir, M. (2016). Microstructural alteration of alkali activated slag mortars depend on exposed high temperature level. Constr Build Mater, 104, 169–180. [CrossRef]
  • 30. Yang, Z., Mocadlo, R., Zhao, M., Sisson, R.D., Jr., Tao, M., & Liang, J. (2019). Preparation of a geopolymer from red mud slurry and class F fly ash and its behavior at elevated temperatures. Constr Build Mater, 221, 308–317. [CrossRef]
  • 31. Türkmen, İ., Karakoç, M. B., Kantarcı, F., Maraş, M. M., & Demirboğa, R. (2016). Fire resistance of geopolymer concrete produced from Elazığ ferrochrome slag. Fire Mater, 40, 836–847. [CrossRef]
  • 32. Karakoç, M. B., Türkmen, İ., Maraş, M. M., Kantarcı, F., Demirboğa, R., & Toprak, M. U. (2014). Mechanical properties and setting time of ferrochrome slag based geopolymer paste and mortar. Constr Build Mater, 72, 283–292. [CrossRef]
  • 33. Nuaklong, P., Jongvivatsakul, P., Pothisiri, T., Sata, V., & Chindaprasirt, P. (2020). Influence of rice husk ash on mechanical properties and fire resistance of recycled aggregate high-calcium fly ash geopolymer concrete. J Clean Prod, 252, 119797. [CrossRef]
  • 34. Bideci, Ö. S. (2016). The effect of high temperature on lightweight concretes produced with colemanite coated pumice aggregates. Constr Build Mater, 113, 631–640. [CrossRef]
  • 35. Abali, Y., Bayca, S. U., & Targan, S. (2006). Evaluation of blends tincal waste, volcanic tuff, bentonite and fly ash for use as a cement admixture. J Hazard Mater, 131, 126–130. [CrossRef]
  • 36. Turan, E. (2020). The engineering properties of boron waste clays and its usability in stabilisation of high plasticity clay [MS thesis, Ataturk University].
  • 37. Kurt Albayrak, Z.N., & Turan, E. (2019). Kestelek Bor Atık Kili Katkılı Yüksek Plastisiteli Bir Kilin Mukavemet Özelliklerinin Araştırılması. Iğdır Univ Fen Bil Enst Der, 9, 890–899. [CrossRef]
  • 38. Albayrak, Z. N. K., & Turan, E. (2021). The use of boron waste clay to improve the geotechnical properties of a high plasticity clay. Arab J Geosci, 14, 1002. [CrossRef]
  • 39. Kula, I., Olgun, A., Sevinc, V., & Erdogan, Y. (2002). An investigation on the use of tincal ore waste, fly ash, and coal bottom ash as Portland cement replacement materials. Cem Concr Res, 32, 227–232. [CrossRef]
  • 40. Boncukcuoğlu, R., Kocakeri̇m, M. M., Tosunoğlu, V., & Yilmaz, M. T. (2002). Utilization of trommel sieve waste as an additive in Portland cement production. Cem Concr Res, 32, 35–39. [CrossRef]
  • 41. Kürklü, G. (2016). The effect of high temperature on the design of blast furnace slag and coarse fly ash-based geopolymer mortar. Compos Part B Eng, 92, 9–18. [CrossRef]
  • 42. Bouaissi, A., Li, L., Abdullah, M. M. A. B., & Bui, Q. B. (2019). Mechanical properties and microstructure analysis of FA-GGBS-HMNS based geopolymer concrete. Constr Build Mater, 210, 198–209. [CrossRef]
  • 43. Zhang, Z., Zhu, Y., Yang, T., Li, L., Zhu, H., & Wang, H. (2017). Conversion of local industrial wastes into greener cement through geopolymer technology: A case study of high-magnesium nickel slag. J Clean Prod, 141, 463–471. [CrossRef]
  • 44. Haha, M. B., Lothenbach, B., Le Saout, G. L., & Winnefeld, F. (2011). Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag - Part I: Effect of MgO. Cem Concr Res, 41, 955–963. [CrossRef]
  • 45. Uysal, M., Al-mashhadani, M. M., Aygörmez, Y., & Canpolat, O. (2018). Effect of using colemanite waste and silica fume as partial replacement on the performance of metakaolin-based geopolymer mortars. Constr Build Mater, 176, 271–282. [CrossRef]
  • 46. Görhan, G., & Kürklü, G. (2014). The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures. Compos Part B Eng, 58, 371–377. [CrossRef]
  • 47. Shill, S.K., Al-Deen, S., Ashraf, M., & Hutchison, W. (2020). Resistance of fly ash based geopolymer mortar to both chemicals and high thermal cycles simultaneously. Constr Build Mater, 239, 117886. [CrossRef]
  • 48. Al-Majidi, M. H., Lampropoulos, A., Cundy, A., & Meikle, S. (2016). Development of geopolymer mortar under ambient temperature for in situ applications. Constr Build Mater, 120, 198–211. [CrossRef]
  • 49. Criado, M., Palomo, A., & Fernández-Jiménez, A. (2005). Alkali activation of fly ashes. Part 1: Effect of curing conditions on the carbonation of the reaction products. Fuel, 84, 2048–2054. [CrossRef]
  • 50. Swanepoel, J. C., & Strydom, C. A. (2002). Utilisation of fly ash in a geopolymeric material. Appl Geochem, 17, 1143–1148. [CrossRef]
  • 51. Yang, T., Yao, X., Zhang, Z., & Wang, H. (2012). Mechanical property and structure of alkali-activated fly ash and slag blends. J Sustain Cem Based Mater, 1, 167–178.
  • 52. Bobrowski, A., Kmita, A., Starowicz, M., Hutera, B., & Stypuła, B. (2012). Effect of magnesium oxide nanoparticles on water glass structure. Arch Foundry Eng, 12(3), 912. [CrossRef]
  • 53. Mihailova, I., Radev, L., Aleksandrova, V., Colova, I., Salvado, I. M. M., & Fernandes, M. H. V. (2015). Carbonate-apatite forming ability of polyphase glass-ceramics in the CaO-MgO-SiO. J Chem Technol Metall, 50, 502–511.
  • 54. Zhang, H. Y., Kodur, V., Wu, B., Cao, L., & Wang, F. (2016). Thermal behavior and mechanical properties of geopolymer mortar after exposure to elevated temperatures. Constr Build Mater, 109, 17–24. [CrossRef]
  • 55. Ali, N., Canpolat, O., Aygörmez, Y., & Al-Mashhadani, M. M. (2020). Evaluation of the 12–24 mm basalt fibers and boron waste on reinforced metakaolin-based geopolymer. Constr Build Mater, 251, 118976. [CrossRef]
  • 56. Aygörmez, Y., Canpolat, O., Al-mashhadani, M. M., & Uysal, M. (2020). A survey on one year strength performance of reinforced geopolymer composites. Constr Build Mater, 264, 120267. [CrossRef]
  • 57. Aygörmez, Y., Canpolat, O., Al-mashhadani, M. M., & Uysal, M. (2020). Elevated temperature, freezing-thawing and wetting-drying effects on polypropylene fiber reinforced metakaolin based geopolymer composites. Constr Build Mater, 235, 117502. [CrossRef]
  • 58. Şahin, F., Uysal, M., Canpolat, O., Aygörmez, Y., Cosgun, T., & Dehghanpour, H. (2021). Effect of basalt fiber on metakaolin-based geopolymer mortars containing rilem, basalt and recycled waste concrete aggregates. Constr Build Mater, 301, 124113. [CrossRef]
  • 59. Jiang, X., Xiao, R., Zhang, M., Hu, W., Bai, Y., & Huang, B. (2020). A laboratory investigation of steel to fly ash-based geopolymer paste bonding behavior after exposure to elevated temperatures. Constr Build Mater, 254, 119267. [CrossRef]
  • 60. Li, C., Sun, H., & Li, L. (2010). A review: The comparison between alkali-activated slag (Si+ Ca) and metakaolin (Si+ Al) cements. Cem Concr Res, 40, 1341–1349. [CrossRef]
  • 61. Lee, N. K., Koh, K. T., An, G. H., & Ryu, G. S. (2017). Influence of binder composition on the gel structure in alkali activated fly ash/slag pastes exposed to elevated temperatures. Ceram Int, 43, 2471–2480. [CrossRef]
  • 62. Yang, T., Wu, Q., Zhu, H., & Zhang, Z. (2017). Geopolymer with improved thermal stability by incorporating high-magnesium nickel slag. Constr Build Mater, 155, 475–484. [CrossRef]
  • 63. He, P., Jia, D., Lin, T., Wang, M., & Zhou, Y. (2010). Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites. Ceram Int, 36, 1447–1453. [CrossRef]
  • 64. Kong, D. L. Y., Sanjayan, J. G., & Sagoe-Crentsil, K. (2007). Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem Concr Res, 37, 1583–1589. [CrossRef]

High Temperature Performance of Geopolymer: Contribution of Boron Tincal Waste

Year 2024, Volume: 9 Issue: 3, 255 - 267, 30.09.2024
https://doi.org/10.47481/jscmt.1555168

Abstract

The world's largest boron deposits are in Turkey, Russia, and the U.S.A. Türkiye holds about 73% of the world's reserves of oil. The tincal mineral accounts for approximately 25.3% of Türkiye's boron reserves. Annually, around 900,000 tons of boron-derived waste are produced to obtain 1 million tons of borax pentahydrate from the tincal mine. This waste is stored in pools, causing considerable environmental issues. This study investigates the potential use of tincal waste, an environmental problem, in cement and concrete applications. Tincal waste (T.W.) was utilized to produce geopolymer mortar. Geopolymer samples were created by replacing ground blast furnace slag (G.B.F.S.) with 10%, 20%, 30%, and 40% tincal waste (T.W.) by weight. The mixture samples were cured at room temperature and 60 °C. After curing, the samples were exposed to high temperatures of 200 °C, 400 °C, and 600 °C. The samples' unit weight, compressive strength, ultrasonic pulse velocity (U.P.V.), and mass loss values were measured.
A mathematical model was also developed to describe the relationship between compressive strength and U.P.V. before and after high temperatures. The samples underwent Fourier Transform Infrared Spectroscopy (FTIR) microstructural analysis. The results showed that using up to 20% T.W. enhanced the properties of the samples before and after high-temperature exposure. A strong correlation was found between compressive strength and U.P.V. These findings suggest that T.W. has potential as a novel material for use in geopolymer technology.

References

  • 1. Schneider, M., Romer, M., Tschudin, M., & Bolio, H. (2011). Sustainable cement production present and future. Cem Concr Res, 41, 642–650. [CrossRef]
  • 2. Benhelal, E., Zahedi, G., Shamsaei, E., & Bahadori, A. (2013). Global strategies and potentials to curb CO2 emissions in cement industry. J Clean Prod, 51, 142–161. [CrossRef]
  • 3. He, Z., Zhu, X., Wang, J., Mu, M., & Wang, Y. (2019). Comparison of CO2 emissions from O.P.C. and recycled cement production. Constr Build Mater, 211, 965–973. [CrossRef]
  • 4. Çelik, Z. (2023). Investigation of the use of ground raw vermiculite as a supplementary cement materials in self-compacting mortars: Comparison with class C fly ash. J Build Eng, 65, 105745. [CrossRef]
  • 5. Gartner, E. (2004). Industrially interesting approaches to “low-CO2” cements. Cem Concr Res, 34, 1489–1498. [CrossRef]
  • 6. Zakka, W. P., Lim, N. H. A. S., & Khun, M. C. (2021). A scientometric review of geopolymer concrete. J Clean Prod, 280, 124353. [CrossRef]
  • 7. Bellum, R. R., Muniraj, K., Indukuri, C. S. R., & Madduru, S. R. C. (2020). Investigation on performance enhancement of fly ash-GGBFS based graphene geopolymer concrete. J Build Eng, 32, 101659. [CrossRef]
  • 8. Prud'homme, E., Michaud, E., Joussein, S., & Rossignol, S. (2012). Influence of raw materials and potassium and silicon concentrations on the formation of a zeolite phase in a geopolymer network during thermal treatment. J Non-Cryst Solids, 358, 1908–1916. [CrossRef]
  • 9. Sahin, F., Uysal, M., Canpolat, O., Cosgun, T., & Dehghanpour, H. (2021). The effect of polyvinyl fibers on metakaolin-based geopolymer mortars with different aggregate filling. Constr Build Mater, 300, 124257. [CrossRef]
  • 10. Mehta, A., & Siddique, R. (2016). An overview of geopolymers derived from industrial by-products. Constr Build Mater, 127, 183–198. [CrossRef]
  • 11. Lin, H., Liu, H., Li, Y., & Kong, X. (2021). Properties and reaction mechanism of phosphoric acid activated metakaolin geopolymer at varied curing temperatures. Cem Concr Res, 144, 106425. [CrossRef]
  • 12. Masi, G., Rickard, W. D. A., Bignozzi, M. C., & Van Riessen, A. (2015). The effect of organic and inorganic fibres on the mechanical and thermal properties of aluminate activated geopolymers. Compos Part B Eng, 76, 218–228. [CrossRef]
  • 13. Wu, Y., Lu, B., Bai, T., Wang, H., Du, F., Zhang, Y., Cai, L., Jiang, C., & Wang, W. (2019). Geopolymer, green alkali activated cementitious material: Synthesis, applications and challenges. Constr Build Mater, 224, 930–949. [CrossRef]
  • 14. Bai, T., Song, Z., Wang, H., Wu, Y., & Huang, W. (2019). Performance evaluation of metakaolin geopolymer modified by different solid wastes. J Clean Prod, 226, 114–121. [CrossRef]
  • 15. Yang, K. H., Song, J. K., & Song, K. I. (2013). Assessment of CO2 reduction of alkali-activated concrete. J Clean Prod, 39, 265–272. [CrossRef]
  • 16. Yang, T., Han, E., Wang, X., & Wu, D. (2017). Surface decoration of polyimide fiber with carbon nanotubes and its application for mechanical enhancement of phosphoric acid-based geopolymers. Appl Surf Sci, 416, 200–212. [CrossRef]
  • 17. Qaidi, S. M. A., Atrushi, D. S., Mohammed, A. S., Ahmed, H. U., Faraj, R. H., Emad, W., Tayeh, B. A., & Najm, H. M. (2022). Ultra-high-performance geopolymer concrete: A review. Constr Build Mater, 346, 128495. [CrossRef]
  • 18. Ismail, I., Bernal, S. A., Provis, J. L., San Nicolas, R., Hamdan, S., & van Deventer, J. S. J. (2014). Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cem Concr Compos, 45, 125–135. [CrossRef]
  • 19. Gao, X., Yu, Q. L., & Brouwers, H. J. H. (2015). Reaction kinetics, gel character and strength of ambient temperature cured alkali activated slag–fly ash blends. Constr Build Mater, 80, 105–115. [CrossRef]
  • 20. Omur, T., Miyan, N., Kabay, N., Birol, B., & Oktay, D. (2023). Characterization of ferrochrome ash and blast furnace slag based alkali-activated paste and mortar. Constr Build Mater, 363, 129805. [CrossRef]
  • 21. Zhang, H. Y., Qiu, G. H., Kodur, V., & Yuan, Z. S. (2020). Spalling behavior of metakaolin-fly ash based geopolymer concrete under elevated temperature exposure. Cem Concr Compos, 106, 103483. [CrossRef]
  • 22. Mendes, A., Sanjayan, J. G., Gates, W. P., & Collins, F. (2012). The influence of water absorption and porosity on the deterioration of cement paste and concrete exposed to elevated temperatures, as in a fire event. Cem Concr Compos, 34, 1067–1074. [CrossRef]
  • 23. Kuri, J. C., Majhi, S., Sarker, P. K., & Mukherjee, A. (2021). Microstructural and non-destructive investigation of the effect of high temperature exposure on ground ferronickel slag blended fly ash geopolymer mortars. J Build Eng, 43, 103099. [CrossRef]
  • 24. Davidovits, J. (1991). Geopolymers: inorganic polymeric new materials. J Therm Anal Calorim, 37, 1633–1656. [CrossRef]
  • 25. Kong, D. L. Y., & Sanjayan, J. G. (2010). Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cem Concr Res, 40, 334–339. [CrossRef]
  • 26. Lemougna, P. N., Adediran, A., Yliniemi, J., Ismailov, A., Levanen, E., Tanskanen, P., Kinnunen, P., Roning, J., & Illikainen, M. (2020). Thermal stability of one-part metakaolin geopolymer composites containing high volume of spodumene tailings and glass wool. Cem Concr Compos, 114, 103792. [CrossRef]
  • 27. Pan, Z., Tao, Z., Cao, Y. F., Wuhrer, R., & Murphy, T. (2018). Compressive strength and microstructure of alkali-activated fly ash/slag binders at high temperature. Cem Concr Compos, 86, 9–18. [CrossRef]
  • 28. Guerrieri, M., Sanjayan, J., & Collins, F. (2010). Residual strength properties of sodium silicate alkali activated slag paste exposed to elevated temperatures. Mater Struct, 43, 765–773. [CrossRef]
  • 29. Türker, H. T., Balçikanli, M., Durmuş, İ. H., Özbay, E., & Erdemir, M. (2016). Microstructural alteration of alkali activated slag mortars depend on exposed high temperature level. Constr Build Mater, 104, 169–180. [CrossRef]
  • 30. Yang, Z., Mocadlo, R., Zhao, M., Sisson, R.D., Jr., Tao, M., & Liang, J. (2019). Preparation of a geopolymer from red mud slurry and class F fly ash and its behavior at elevated temperatures. Constr Build Mater, 221, 308–317. [CrossRef]
  • 31. Türkmen, İ., Karakoç, M. B., Kantarcı, F., Maraş, M. M., & Demirboğa, R. (2016). Fire resistance of geopolymer concrete produced from Elazığ ferrochrome slag. Fire Mater, 40, 836–847. [CrossRef]
  • 32. Karakoç, M. B., Türkmen, İ., Maraş, M. M., Kantarcı, F., Demirboğa, R., & Toprak, M. U. (2014). Mechanical properties and setting time of ferrochrome slag based geopolymer paste and mortar. Constr Build Mater, 72, 283–292. [CrossRef]
  • 33. Nuaklong, P., Jongvivatsakul, P., Pothisiri, T., Sata, V., & Chindaprasirt, P. (2020). Influence of rice husk ash on mechanical properties and fire resistance of recycled aggregate high-calcium fly ash geopolymer concrete. J Clean Prod, 252, 119797. [CrossRef]
  • 34. Bideci, Ö. S. (2016). The effect of high temperature on lightweight concretes produced with colemanite coated pumice aggregates. Constr Build Mater, 113, 631–640. [CrossRef]
  • 35. Abali, Y., Bayca, S. U., & Targan, S. (2006). Evaluation of blends tincal waste, volcanic tuff, bentonite and fly ash for use as a cement admixture. J Hazard Mater, 131, 126–130. [CrossRef]
  • 36. Turan, E. (2020). The engineering properties of boron waste clays and its usability in stabilisation of high plasticity clay [MS thesis, Ataturk University].
  • 37. Kurt Albayrak, Z.N., & Turan, E. (2019). Kestelek Bor Atık Kili Katkılı Yüksek Plastisiteli Bir Kilin Mukavemet Özelliklerinin Araştırılması. Iğdır Univ Fen Bil Enst Der, 9, 890–899. [CrossRef]
  • 38. Albayrak, Z. N. K., & Turan, E. (2021). The use of boron waste clay to improve the geotechnical properties of a high plasticity clay. Arab J Geosci, 14, 1002. [CrossRef]
  • 39. Kula, I., Olgun, A., Sevinc, V., & Erdogan, Y. (2002). An investigation on the use of tincal ore waste, fly ash, and coal bottom ash as Portland cement replacement materials. Cem Concr Res, 32, 227–232. [CrossRef]
  • 40. Boncukcuoğlu, R., Kocakeri̇m, M. M., Tosunoğlu, V., & Yilmaz, M. T. (2002). Utilization of trommel sieve waste as an additive in Portland cement production. Cem Concr Res, 32, 35–39. [CrossRef]
  • 41. Kürklü, G. (2016). The effect of high temperature on the design of blast furnace slag and coarse fly ash-based geopolymer mortar. Compos Part B Eng, 92, 9–18. [CrossRef]
  • 42. Bouaissi, A., Li, L., Abdullah, M. M. A. B., & Bui, Q. B. (2019). Mechanical properties and microstructure analysis of FA-GGBS-HMNS based geopolymer concrete. Constr Build Mater, 210, 198–209. [CrossRef]
  • 43. Zhang, Z., Zhu, Y., Yang, T., Li, L., Zhu, H., & Wang, H. (2017). Conversion of local industrial wastes into greener cement through geopolymer technology: A case study of high-magnesium nickel slag. J Clean Prod, 141, 463–471. [CrossRef]
  • 44. Haha, M. B., Lothenbach, B., Le Saout, G. L., & Winnefeld, F. (2011). Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag - Part I: Effect of MgO. Cem Concr Res, 41, 955–963. [CrossRef]
  • 45. Uysal, M., Al-mashhadani, M. M., Aygörmez, Y., & Canpolat, O. (2018). Effect of using colemanite waste and silica fume as partial replacement on the performance of metakaolin-based geopolymer mortars. Constr Build Mater, 176, 271–282. [CrossRef]
  • 46. Görhan, G., & Kürklü, G. (2014). The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures. Compos Part B Eng, 58, 371–377. [CrossRef]
  • 47. Shill, S.K., Al-Deen, S., Ashraf, M., & Hutchison, W. (2020). Resistance of fly ash based geopolymer mortar to both chemicals and high thermal cycles simultaneously. Constr Build Mater, 239, 117886. [CrossRef]
  • 48. Al-Majidi, M. H., Lampropoulos, A., Cundy, A., & Meikle, S. (2016). Development of geopolymer mortar under ambient temperature for in situ applications. Constr Build Mater, 120, 198–211. [CrossRef]
  • 49. Criado, M., Palomo, A., & Fernández-Jiménez, A. (2005). Alkali activation of fly ashes. Part 1: Effect of curing conditions on the carbonation of the reaction products. Fuel, 84, 2048–2054. [CrossRef]
  • 50. Swanepoel, J. C., & Strydom, C. A. (2002). Utilisation of fly ash in a geopolymeric material. Appl Geochem, 17, 1143–1148. [CrossRef]
  • 51. Yang, T., Yao, X., Zhang, Z., & Wang, H. (2012). Mechanical property and structure of alkali-activated fly ash and slag blends. J Sustain Cem Based Mater, 1, 167–178.
  • 52. Bobrowski, A., Kmita, A., Starowicz, M., Hutera, B., & Stypuła, B. (2012). Effect of magnesium oxide nanoparticles on water glass structure. Arch Foundry Eng, 12(3), 912. [CrossRef]
  • 53. Mihailova, I., Radev, L., Aleksandrova, V., Colova, I., Salvado, I. M. M., & Fernandes, M. H. V. (2015). Carbonate-apatite forming ability of polyphase glass-ceramics in the CaO-MgO-SiO. J Chem Technol Metall, 50, 502–511.
  • 54. Zhang, H. Y., Kodur, V., Wu, B., Cao, L., & Wang, F. (2016). Thermal behavior and mechanical properties of geopolymer mortar after exposure to elevated temperatures. Constr Build Mater, 109, 17–24. [CrossRef]
  • 55. Ali, N., Canpolat, O., Aygörmez, Y., & Al-Mashhadani, M. M. (2020). Evaluation of the 12–24 mm basalt fibers and boron waste on reinforced metakaolin-based geopolymer. Constr Build Mater, 251, 118976. [CrossRef]
  • 56. Aygörmez, Y., Canpolat, O., Al-mashhadani, M. M., & Uysal, M. (2020). A survey on one year strength performance of reinforced geopolymer composites. Constr Build Mater, 264, 120267. [CrossRef]
  • 57. Aygörmez, Y., Canpolat, O., Al-mashhadani, M. M., & Uysal, M. (2020). Elevated temperature, freezing-thawing and wetting-drying effects on polypropylene fiber reinforced metakaolin based geopolymer composites. Constr Build Mater, 235, 117502. [CrossRef]
  • 58. Şahin, F., Uysal, M., Canpolat, O., Aygörmez, Y., Cosgun, T., & Dehghanpour, H. (2021). Effect of basalt fiber on metakaolin-based geopolymer mortars containing rilem, basalt and recycled waste concrete aggregates. Constr Build Mater, 301, 124113. [CrossRef]
  • 59. Jiang, X., Xiao, R., Zhang, M., Hu, W., Bai, Y., & Huang, B. (2020). A laboratory investigation of steel to fly ash-based geopolymer paste bonding behavior after exposure to elevated temperatures. Constr Build Mater, 254, 119267. [CrossRef]
  • 60. Li, C., Sun, H., & Li, L. (2010). A review: The comparison between alkali-activated slag (Si+ Ca) and metakaolin (Si+ Al) cements. Cem Concr Res, 40, 1341–1349. [CrossRef]
  • 61. Lee, N. K., Koh, K. T., An, G. H., & Ryu, G. S. (2017). Influence of binder composition on the gel structure in alkali activated fly ash/slag pastes exposed to elevated temperatures. Ceram Int, 43, 2471–2480. [CrossRef]
  • 62. Yang, T., Wu, Q., Zhu, H., & Zhang, Z. (2017). Geopolymer with improved thermal stability by incorporating high-magnesium nickel slag. Constr Build Mater, 155, 475–484. [CrossRef]
  • 63. He, P., Jia, D., Lin, T., Wang, M., & Zhou, Y. (2010). Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites. Ceram Int, 36, 1447–1453. [CrossRef]
  • 64. Kong, D. L. Y., Sanjayan, J. G., & Sagoe-Crentsil, K. (2007). Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem Concr Res, 37, 1583–1589. [CrossRef]
There are 64 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Research Articles
Authors

Zinnur Çelik 0000-0001-7298-7367

Emrah Turan 0000-0003-2425-6118

Meral Oltulu 0000-0002-3779-6888

Early Pub Date September 30, 2024
Publication Date September 30, 2024
Submission Date July 19, 2024
Acceptance Date September 1, 2024
Published in Issue Year 2024 Volume: 9 Issue: 3

Cite

APA Çelik, Z., Turan, E., & Oltulu, M. (2024). High Temperature Performance of Geopolymer: Contribution of Boron Tincal Waste. Journal of Sustainable Construction Materials and Technologies, 9(3), 255-267. https://doi.org/10.47481/jscmt.1555168

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr