Research Article
BibTex RIS Cite

On (k,3)-arcs derived by Ceva configurations in PG(2,5)

Year 2024, , 10 - 18, 31.12.2024
https://doi.org/10.59313/jsr-a.1559383

Abstract

In this study, we investigate complete (k,2)-arcs and (k,3)-arcs derived from a Ceva configuration in the projective plane of order five by implementing an algorithm in C#. Our results indicate the existence of a complete (6,2)-arc that has no points in common with the (7,3)-arc formed by the Ceva configuration. Furthermore, we identify eight different complete (10,3)-arcs that include a Ceva configuration. Additionally, we explore cyclic order Ceva configurations, denoted as C_1,C_2,C_3, and C_4, all of which have a common center. The vertices of each configuration C_i are on the sides of the preceding configuration C_(i-1), with i ranging from 2 to 4. We determine different thirty-two complete (10,3)-arcs and different two complete (6,2)-arcs by constructing cyclic order Ceva configurations C_1,C_2,C_3,C_4 with a common center in PG(2,5).

References

  • [1] J.W.P. Hirschfeld and J.A. Thas, “General Galois Geometries,” Springer Monographs in Mathematics. Springer- Verlag London, 2016.
  • [2] A. Bayar, Z. Akca, E. Altintas, and S. Ekmekci, S. “On the complete arcs containing the quadrangles constructing the Fano planes of the left near field plane of order 9,” New Trend Math. Sci., 4(4), 266-266, 2016. http://dx.doi.org/10.20852/ntmsci.2016.113
  • [3] S. Ekmekci, A. Bayar, E. Altintas, and Z. Akca, “On the Complete (k,2)- Arcs of the Hall Plane of Order 9,” IJARCSSE, 6 (10), 282-288, 2016. ISSN: 2277 128X.
  • [4] Z. Akca, S. Ekmekci, and A. Bayar, “On Fano Configurations of the Left Hall Plane of order 9,” Konuralp J. Math., 4 (2), 116-123, 2016.
  • [5] Z. Akca, and A. Altıntas, “A Note on Fano Configurations in the Projective Space PG(5,2),” Konuralp J. Math., 9(1), 190-192, 2021.
  • [6] Z. Akca, “A numerical computation of (k, 3)-arcs in the left semifield plane order 9”, Int. Electron. J. Geom., 4(2), 13-21, 2011.
  • [7] Z. Akca, and I. Günaltılı, I. “On the (k, 3)- arcs of CPG (2,25,5),” Anadolu Univ J Sci Technol J Theor Sci, 1(0), 21-27, 2012.
  • [8] E. Altıntas, and A. Bayar, “Complete (k,2)-Arcs in the Projective Plane Order 5,” HSJG, 5(1), 11-14, 2023. e-ISSN 2687-4261.
  • [9] E. Altıntaş Kahriman, A. Bayar, “Some Geometric Structures Related to Desargues Confıguration in PG(2,5),” Estuscience-Se, 25(3):511-518, September 2024. https://doi.org/10.18038/estubtda.1525364
  • [10] O.H. Rodriguez, and J. Fernández, “Heuristic Conversations On Ceva's Theorem”, 2016.
  • [11] V. Danos, and L. Regnier, “The structure of multiplicatives,” Arch Math Logic, 28, 181-203, 1989. https://doi.org/10.1007/BF01622878
  • [12] J. Benitez, “A unified proof of Ceva and Menelaus’ theorems using projective geometry,” JGG, 11(1):39–44, 2007. ISSN 1433-8157
  • [13] V. Nicolae, “On The Ceva’s And Menelaus’s Theorems.” Rom. J. Phys., [S.l.], v. 5, n. 2, p. 43-50, 2020. ISSN 2537-5229.
  • [14] B.K. Funk, “Ceva and Menelaus in projective geometry,” University of Louisuille, 42 p, 2008.
  • [15] S. Çiftçi, R. Kaya, and J.C. Ferrar, “On Menelaus and Ceva 6-figures in Moufang projective planes,” Geom. Dedicata, vol. 19, no. 3, pp. 295–296, 1985.
  • [16] A. Bayar, and S. Ekmekçi, “On the Menelaus and Ceva 6-figures in the fibered projective planes,” Abstr. Appl. Anal.,1-5, 2014. 10.1155/2014/803173
  • [17] Z. Akça, A. Bayar, and S. Ekmekçi, “On the intuitionistic fuzzy projective Menelaus and Ceva’s conditions,” Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(1), 891-899, 2020. https://doi.org/10.31801/cfsuasmas.567753.
  • [18] J.W.P. Hirschfeld, and J.A. Thas, “General Galois Geometries,” The Charendon Press, Oxford, 1991.
  • [19] J.W.P. Hirschfeld, and J.F. Voloch, “Group-arcs of prime order on cubic curves,” Finite Geometry and Combinatorics, 191, 177-185, 2015.
  • [20] J.W.P. Hirschfeld, and E.V.D. Pichanick “Bounded for arcs of arbitrary degree in finite Desarguesian Planes” J Comb Des., 24(4), 184-196, 2016.
  • [21] B.A. Qassim, “The construction for the arcs (8,4)-from the two arcs (7,4)-in PG (2,q), q=5,” J. Phys. Conf. Ser., 1664012039, 2020.
Year 2024, , 10 - 18, 31.12.2024
https://doi.org/10.59313/jsr-a.1559383

Abstract

References

  • [1] J.W.P. Hirschfeld and J.A. Thas, “General Galois Geometries,” Springer Monographs in Mathematics. Springer- Verlag London, 2016.
  • [2] A. Bayar, Z. Akca, E. Altintas, and S. Ekmekci, S. “On the complete arcs containing the quadrangles constructing the Fano planes of the left near field plane of order 9,” New Trend Math. Sci., 4(4), 266-266, 2016. http://dx.doi.org/10.20852/ntmsci.2016.113
  • [3] S. Ekmekci, A. Bayar, E. Altintas, and Z. Akca, “On the Complete (k,2)- Arcs of the Hall Plane of Order 9,” IJARCSSE, 6 (10), 282-288, 2016. ISSN: 2277 128X.
  • [4] Z. Akca, S. Ekmekci, and A. Bayar, “On Fano Configurations of the Left Hall Plane of order 9,” Konuralp J. Math., 4 (2), 116-123, 2016.
  • [5] Z. Akca, and A. Altıntas, “A Note on Fano Configurations in the Projective Space PG(5,2),” Konuralp J. Math., 9(1), 190-192, 2021.
  • [6] Z. Akca, “A numerical computation of (k, 3)-arcs in the left semifield plane order 9”, Int. Electron. J. Geom., 4(2), 13-21, 2011.
  • [7] Z. Akca, and I. Günaltılı, I. “On the (k, 3)- arcs of CPG (2,25,5),” Anadolu Univ J Sci Technol J Theor Sci, 1(0), 21-27, 2012.
  • [8] E. Altıntas, and A. Bayar, “Complete (k,2)-Arcs in the Projective Plane Order 5,” HSJG, 5(1), 11-14, 2023. e-ISSN 2687-4261.
  • [9] E. Altıntaş Kahriman, A. Bayar, “Some Geometric Structures Related to Desargues Confıguration in PG(2,5),” Estuscience-Se, 25(3):511-518, September 2024. https://doi.org/10.18038/estubtda.1525364
  • [10] O.H. Rodriguez, and J. Fernández, “Heuristic Conversations On Ceva's Theorem”, 2016.
  • [11] V. Danos, and L. Regnier, “The structure of multiplicatives,” Arch Math Logic, 28, 181-203, 1989. https://doi.org/10.1007/BF01622878
  • [12] J. Benitez, “A unified proof of Ceva and Menelaus’ theorems using projective geometry,” JGG, 11(1):39–44, 2007. ISSN 1433-8157
  • [13] V. Nicolae, “On The Ceva’s And Menelaus’s Theorems.” Rom. J. Phys., [S.l.], v. 5, n. 2, p. 43-50, 2020. ISSN 2537-5229.
  • [14] B.K. Funk, “Ceva and Menelaus in projective geometry,” University of Louisuille, 42 p, 2008.
  • [15] S. Çiftçi, R. Kaya, and J.C. Ferrar, “On Menelaus and Ceva 6-figures in Moufang projective planes,” Geom. Dedicata, vol. 19, no. 3, pp. 295–296, 1985.
  • [16] A. Bayar, and S. Ekmekçi, “On the Menelaus and Ceva 6-figures in the fibered projective planes,” Abstr. Appl. Anal.,1-5, 2014. 10.1155/2014/803173
  • [17] Z. Akça, A. Bayar, and S. Ekmekçi, “On the intuitionistic fuzzy projective Menelaus and Ceva’s conditions,” Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(1), 891-899, 2020. https://doi.org/10.31801/cfsuasmas.567753.
  • [18] J.W.P. Hirschfeld, and J.A. Thas, “General Galois Geometries,” The Charendon Press, Oxford, 1991.
  • [19] J.W.P. Hirschfeld, and J.F. Voloch, “Group-arcs of prime order on cubic curves,” Finite Geometry and Combinatorics, 191, 177-185, 2015.
  • [20] J.W.P. Hirschfeld, and E.V.D. Pichanick “Bounded for arcs of arbitrary degree in finite Desarguesian Planes” J Comb Des., 24(4), 184-196, 2016.
  • [21] B.A. Qassim, “The construction for the arcs (8,4)-from the two arcs (7,4)-in PG (2,q), q=5,” J. Phys. Conf. Ser., 1664012039, 2020.
There are 21 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Articles
Authors

Elif Altıntaş Kahriman 0000-0002-3454-0326

Ayşe Bayar 0000-0002-2210-5423

Publication Date December 31, 2024
Submission Date October 1, 2024
Acceptance Date November 3, 2024
Published in Issue Year 2024

Cite

IEEE E. Altıntaş Kahriman and A. Bayar, “On (k,3)-arcs derived by Ceva configurations in PG(2,5)”, JSR-A, no. 059, pp. 10–18, December 2024, doi: 10.59313/jsr-a.1559383.