Research Article
BibTex RIS Cite

Management of rogue waves in variable shape optical lattice potential

Year 2025, Issue: 063, 24 - 37, 30.12.2025
https://doi.org/10.59313/jsr-a.1687860

Abstract

We study the rational rogue wave solutions of the Gross-Pitaevskii equation with a variable shape optical lattice potential. The analytical solution is constructed via similarity transformation, which converts the Gross-Pitaevskii equation, including space and time varying coefficients, to the nonlinear Schrödinger equation. We explore how the rogue wave patterns change depending on the lattice parameters. It is shown that tuning the optical lattice parameters significantly influences the solution structures: small values of the modulational parameter and potential depth produce single-peak Peregrine solitons, while large values of these parameters lead to multi-peak, spatially periodic Akhmediev-like breather patterns. Therefore, we demonstrate that Akhmediev-like breathers can be obtained by adjusting the tunable parameters of the potential. The modulational instability is discussed, and the parameter region for modulational instability is determined. The results suggest potential applications in the control of nonlinear excitations in Bose–Einstein condensates, as well as in analogous optical systems where extreme waves play a crucial role.

References

  • [1] L. Draper, “Freak Ocean Waves”, Mar. Obs., vol. 35, pp. 193-195, 1965.
  • [2] C. Kharif, E. Pelinovsky and A. Slunyaev, Rogue Waves in the Ocean: Observation, Theories and Modeling, New York, USA:Springer, 2009.
  • [3] P. Muller, Ch. Garrett and A. Osborne, “Rogue Waves—The Fourteenth 'Aha Huliko'a Hawaiian Winter Workshop”, Oceanography, vol. 18, no. 3, pp. 66–75, Sep. 2005, doi: https://doi.org/10.5670/oceanog.2005.30.
  • [4] D. R. Solli, P. Koonath, B. Jalali, “Optical rogue waves”, Nature, vol. 450, no. 13, pp. 1054–1057, Dec. 2007, | doi:10.1038/nature06402.
  • [5] D. I. Yeom and B. Eggleton, “Rogue waves surface in light”, Nature, vol. 450, no. 953, pp. 953–954, Dec. 2007.
  • [6] B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev and JM. Dudley, “The Peregrine soliton in nonlinear fibre optics”, Nat. Phys., vol. 6, pp.790–795, Oct. 2010, doi: 10.1038/NPHYS1740.
  • [7] Y. V. Bludov, V. V. Konotop and N. Akhmediev, “Matter rogue waves”, Phys. Rev. A, vol. 80, no. 033610, Sep. 2009, doi:10.1103/PhysRevA.80.033610.
  • [8] Y. V. Bludov, V. V. Konotop and N. Akhmediev, “Vector rogue waves in binary mixtures of Bose-Einstein condensates”, Eur. Phys. J. Spec. Top., vol. 185, pp. 169–180, Aug. 2010, doi: 10.1140/epjst/e2010-01247-6.
  • [9] W. M. Moslem, P. K. Shukla and B. Eliasson, “Surface plasma rogue waves”, Europhys. Lett., vol. 96, no. 2, pp. 25002, Sep. 2011, doi:10.1209/0295-5075/96/25002.
  • [10] V. B. Matveev and M. A. Salle, Darboux Transformation and Solitons, Berlin, Germany:Springer-Verlag, 1991.
  • [11] W. P. Zhong, M. R. Belic and T. Huang, “Rogue wave solutions to the generalized nonlinear Schrödinger equation with variable coefficients”, Phys. Rev. E, vol. 87, no. 065201, June 2013, doi: 10.1103/PhysRevE.87.065201.
  • [12] R. Hirota, “Exact envelope soliton solutions of a nonlinear wave equation”, J. Math. Phys., vol. 14, no: 7, pp. 805-809, July 1973, doi:10.1063/1.1666399.
  • [13] Y. C. Ma, “The Perturbed Plane-Wave Solutions of the Cubic Schrödinger Equation”, Stud. Appl. Math., vol. 60, no. 1, pp. 43-58, Feb. 1979, doi:10.1002/sapm197960143.
  • [14] N. Akhmediev, A. Ankiewicz and M. Taki, “Waves That Appear from Nowhere and Disappear without a Trace”, Phys. Lett. A, vol. 373, no. 6, pp. 675–678, Feb. 2009, doi: 10.1016/j.physleta.2008.12.036.
  • [15] N. Akhmediev, J. M. Soto-Crespo and A. Ankiewicz, “Extreme waves that appear from nowhere: On the nature of rogue waves”, Phys. Lett. A, vol. 373, no. 25, pp. 2137–2145, June 2009, doi: 10.1016/j.physleta.2009.04.023.
  • [16] Dh. Peregrine, “Water Waves, Nonlinear Schrödinger Equations and Their Solutions”, J Aust Math Soc Ser B, vol. 25, no.16, pp. 16-43, April 1983, doi: 10.1017/S0334270000003891.
  • [17] A. Goyal, T. S. Raju, C.N. Kumar and P. K. Panigrahi, “The effect of different background beams on the optical rogue waves generated in a graded-index waveguide”, Optics Commun., vol. 364, pp. 177–180, April 2016, doi:10.1016/j.optcom.2015.11.050.
  • [18] C. Q. Dai, Y. Y. Wanga, Q. Tian and J. F. Zhang, “The management and containment of self-similar rogue waves in the inhomogeneous nonlinear Schrödinger equation”, Annals of Physics, vol. 327, no. 2, pp. 512–521, Feb. 2012, doi:10.1016/j.aop.2011.11.016.
  • [19] B. Q. Li and Y. L. Ma, “Rogue waves for the optical fiber system with variable coefficients”, Optik, vol. 158, pp. 177–184, April 2018, doi:10.1016/j.ijleo.2017.12.114.
  • [20] Z. Yang, W. P. Zhong, M. Belić and Y. Zhang, “Controllable optical rogue waves via nonlinearity management”, Optics Express, vol. 26, no. 6, pp. 7587-7597, Mar. 2018, doi:10.1364/OE.26.007587.
  • [21] Y. Y. Wang, J. S. He and Y. S. Li, “Soliton and Rogue Wave Solution of the New Nonautonomous Nonlinear Schrödinger Equation”, Commun. Theor. Phys., vol. 56, no. 6, pp. 995–1004, 2011, doi:10.1088/0253-6102/56/6/04.
  • [22] J. S. He, E. G. Charalampidis, P.G.Kevrekidis and D. J. Frantzeskakis, “Rogue waves in nonlinear Schrödinger models with variable coefficients: Application to Bose–Einstein condensates”, Phys. Lett. A, vol. 378, no. 5-6, pp. 577–583, Jan. 2014, doi:10.1016/j.physleta.2013.12.002.
  • [23] S. Ali and M. Younis, “Rogue Wave Solutions and Modulation Instability With Variable Coefficient and Harmonic Potential”, Front. Phys., vol. 7, no. 255, Feb. 2020, doi:10.3389/fphy.2019.00255.
  • [24] S. Loomba, R. Pal and C. N. Kumar, “Controlling rogue wave triplets in Bose–Einstein condensate”, J. Phys. B: At. Mol. Opt. Phys., vol. 48, no. 10, pp. 105003, April 2015, doi:10.1088/0953-4075/48/10/105003.
  • [25] K. Manikandan, N. Serikbayev, M. Manigandan and M. Sabareeshwaran, “Dynamic evolution of optical smooth positions in variable coefficient nonlinear Schrödinger equation with external potentials”, Optik - International Journal for Light and Electron Optics, vol. 288, pp. 171203, Oct. 2023, doi:10.1016/j.ijleo.2023.171203.
  • [26] X. F. Wua, G. S. Hua and Z. Y. Ma, “Novel rogue waves in an inhomogenous nonlinear medium with external potentials”, Commun Nonlinear Sci Numer Simulat, vol. 18, no. 12, pp. 3325–3336, Dec. 2013, doi:10.1016/j.cnsns.2013.05.007.
  • [27] N. Kundu, S. Ghosh and U. Roy, “Quantum simulation of rogue waves in Bose-Einstein condensate: An exact analytical method”, Phys. Lett. A, vol. 449, pp. 128335, Oct. 2022, doi:10.1016/j.physleta.2022.128335.
  • [28] K. Manikandan, P. Muruganandam, M. Senthilvelan, M. Lakshmanan, “Manipulating localized matter waves in multicomponent Bose-Einstein condensates”, Phys. Rev. E, vol. 93, pp. 032212, March 2016, doi:10.1103/PhysRevE.93.032212.
  • [29] K. Manikandan, N. V. Priya, M. Senthilvelan and R. Sankaranarayanan, “Higher-order matter rogue waves and their deformations in two-component Bose–Einstein condensates”, Waves in Random and Complexs Media, vol. 32, no. 2, pp. 867–886, March 2022, doi:10.1080/17455030.2020.1804645.
  • [30] W. P. Zhong, M. Belić and B. A. Malomed, “Rogue waves in a two-component Manakov system with variable coefficients and an external potential”, Phys. Rev. E, vol. 92, no. 053201 Nov. 2015, doi:10.1103/PhysRevE.92.053201.
  • [31] X. Cheng, J. Wang, J. Li, “Controllable rogue waves in coupled nonlinear Schrödinger equations with varying potentials and nonlinearities”, Nonlinear Dyn, no. 77, pp. 545–552, March 2014, doi:10.1007/s11071-014-1316-2.
  • [32] F. Yu, “Matter rogue waves and management by external potentials for coupled Gross–Pitaevskii equation”, Nonlinear Dyn, vol. 80, pp. 685–699, Jan. 2015, doi:10.1007/s11071-015-1898-3.
  • [33] C. Q. Dai, Y. Y. Wang and J. F. Zhang, “Managements of scalar and vector rogue waves in a partially nonlocal nonlinear medium with linear and harmonic potentials”, Nonlinear Dyn, vol. 102, pp. 379–391, Sep. 2020, doi:10.1007/s11071-020-05949-0.
  • [34] A. R. Ros, G. C. Katsimiga, S. I. Mistakidis, S. Mossman, G. Biondini, P. Schmelcher, P. Engels and P. G. Kevrekidis, “Experimental realization of the Peregrine soliton in repulsive two-component Bose-Einstein Condensates”, Phys. Rev. Lett., vol. 132, no. 033402, Jan. 2024, doi:10.1103/PhysRevLett132.033402.
  • [35] S. R. Otajonov, B. A. Umarov and F. Kh. Abdullaev, “Modulational instability and discrete quantum droplets in a deep quasi-one-dimensional optical lattice”, Phys. Rev. E, vol. 111, no. 054206, May 2025, doi:10.1103/PhysRevE.111.054206.
  • [36] X. Y. Wen, Z. Lin and D. S. Wang, “High-order rogue wave and mixed interaction patterns for the three-component Gross-Pitaevskii equations in 𝐹=1 spinor Bose-Einstein condensates”, Phys. Rev. E, vol. 109, no. 044215, Apr. 2024, doi:10.1103/PhysRevE.109.044215.
  • [37] E. Kengne, “Baseband modulational instability, integrability condition, and matter-wave solitons of the Gross–Pitaevskii equation with higher-order interactions”, Nonlinear Science, vol. 2, no. 100016, Apr. 2025, doi:10.1016/j.nls.2025.100016.
  • [38] Z. Oztas, “Spin polarization of bright solitons in variable shape optical lattices”, Physica B:Condens. Matter, vol. 666, no. 415106, Oct. 2023, doi:10.1016/j.physb.2023.415106.
  • [39] T. B. Ekogo, M. D. Mboumba, M. R. Kamsap, G. J. N. Makoundit, A. B. Moubissi and T. C. Kofane, “Generation of localized patterns in two-component condensates trapped in variable shape optical lattices”, Chaos Solitons Fractals, vol. 139, no.110025, June 2020, doi:10.1016/j.chaos.2020.110025.
  • [40] M. D. Mboumba, A. B. Moubissi, T. B. Ekogo, D. B. Belobo, G. H. Ben-Bolie and T. C. Kofane, “Stability of binary condensates with spatial modulations of quintic nonlinearities in optical lattices”, Int. J. Mod. Phys. B, vol. 29, no. 3, pp. 1550008, Jan. 2015, doi:10.1142/S0217979215500083.
  • [41] G. Thalhammer, M. Theis, K. Winkler, R. Grimm and J.H. Denschlag, “Inducing an optical Feshbach resonance via stimulated Raman coupling”, Phys. Rev. A, vol. 71, pp. 033403, March 2005, doi:10.1103/PhysRevA.71.033403.
  • [42] J. R. He and H. M. Li, “Nonautonomous bright matter-wave solitons and soliton collisions in Fourier-synthesized optical lattices”, Optics Commun., vol. 284, pp. 3084–3089, Feb. 2011, doi:10.1016/j.optcom.2011.02.004.
  • [43] M. Remoissenet and M. Peyrard, “A new simple model of a kink bearing Hamiltonian”, J. Phys. C, Solid State Phys., vol. 14, no. 18, 1981, 10.1088/0022-3719/14/18/001.
  • [44] N. Akhmediev and V. Korneev, “Modulation instability and periodic solutions of the nonlinear Schrödinger equation”, Theor. Math. Phys., vol. 69, no. 2, pp. 1089–1093, Nov. 1986, https://doi.org/10.1007/BF01037866.
  • [45] N. Akhmediev, A. Ankiewicz and M. Taki, “Waves that appear from nowhere and disappear without a trace”, Phys. Lett. A, vol. 373, no. 6, pp. 675-678, Dec. 2009, doi:10.1016/j.physleta.2008.12.036.
  • [46] N. Akhmediev, A. Ankiewicz and J.M. Soto-Crespo, “Rogue waves and rational solutions of the nonlinear Schrödinger equation”, Phys. Rev. E, vol. 80, pp. 026601, Aug. 2009, doi:10.1103/PhysRevE.80.026601.
  • [47] E. Kengne and W. Liu, “Mixed localized matter wave solitons Einstein condensates with time-varying interatomic interaction and a time-varying complex harmonic trapping potential”, Chaos, Solitons and Fractals, vol. 182, pp. 114808, March 2024, doi:10.1016/j.chaos.2024.114808.
  • [48] E. Kengne, B. A. Malomed and W. Liu, “Phase engineering of chirped rogue waves in Bose–Einstein condensates with a variable scattering length in an expulsive potential”, Commun Nonlinear Sci Numer Simulat, vol. 103, pp. 105983, Aug. 2021, doi:10.1016/j.cnsns.2021.105983.
There are 48 citations in total.

Details

Primary Language English
Subjects General Physics
Journal Section Research Article
Authors

Züleyha Öztaş 0000-0002-7643-429X

Submission Date April 30, 2025
Acceptance Date October 28, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Issue: 063

Cite

IEEE [1]Z. Öztaş, “Management of rogue waves in variable shape optical lattice potential”, JSR-A, no. 063, pp. 24–37, Dec. 2025, doi: 10.59313/jsr-a.1687860.