Research Article
BibTex RIS Cite

Effects of processing parameters and metal-organic framework addition on the properties of PVDF-HFP membranes

Year 2025, Issue: 063, 1 - 13, 30.12.2025
https://doi.org/10.59313/jsr-a.1743283

Abstract

A separator is a porous membrane, and it is an important component of lithium-ion batteries, which provides electrical insulation between the anode and cathode while providing a route for ion conduction in the liquid electrolyte through its porous structure. Currently, various polymeric materials, like poly(ethylene) and poly(propylene), have been used as separators; however, due to the disadvantages of these materials, recent research has shifted towards developing advanced separators using poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) due to its high ionic conductivity. In this study, the effects of processing parameter, e.g. casting thickness, during the formation of porous PVDF-HFP membranes via thermally induced phase separation method, as well as the addition of Ce-modified UiO-66 metal-organic framework (MOF) particles on the properties of the membranes were investigated. The results showed that processing parameters control the thickness, porosity, and electrolyte uptake, thus ionic conductivity, of the neat membranes without having no significant effects on the crystallinity and β phase ratio. However, the incorporation of MOF particles resulted in improved ionic conductivity of PVDF-HFP membranes due to an increase in the amorphous phase content and the intrinsic ion conduction properties of the MOF particles. Electrochemical tests also showed that produced membranes have suitable electrochemical stability window for lithium-ion battery applications. Therefore, this study showed that UiO-66-(Ce) MOF-added PVDF-HFP membranes could be a promising material to be used as a separator for lithium-ion battery applications based on its ionic conductivity.

Supporting Institution

Eskişehir Technical University-Scientific Research Projects Commission under grant no: 22ADP416

Project Number

Project No: 22ADP416

Thanks

This study has been supported by Eskişehir Technical University-Scientific Research Projects Commission under grant no: 22ADP416. The author sincerely acknowledges Ceramic Research Center (SAM) and Onur Özgür Erkarslan for their support during experiments. The author also would like to thank Prof. Dr. Ünal Şen for providing the Ce-MOF particles used in this study.

References

  • [1] Y. J. Hwang, K. S. Nahm, T. P. Kumar, A. M. Stephan, “Poly(vinylidene fluoride-hexafluoropropylene)-based membranes for lithium batteries,” J. Membr. Sci., vol. 310, pp. 349-355, 2008, doi: 10.1016/j.memsci.2007.11.006
  • [2] J. Liu, et al., “An enhanced poly(vinylidene fluoride) matrix separator with TEOS for good performance lithium-ion batteries,” J. Solid State Electrochem., vol. 23, pp. 277-284, 2018, doi: 10.1007/s10008-018-4126-5
  • [3] X. Li, et al., “Hierarchically porous membranes for lithium rechargeable batteries: Recent progress and opportunities,” EcoMat, vol. 4, pp. 2021, doi: 10.1002/eom2.12162
  • [4] J. Y. Han, H.-H. Oh, K. Jun Choi, B. R. Min, “Characterization of poly(vinylidene fluoride) flat sheet membranes prepared in various ratios of water/ethanol for separator of li-ion batteries: Morphology and other properties,” J. Appl. Polym. Sci., vol. 122, pp. 2653-2665, 2011, doi: 10.1002/app.34285
  • [5] V. Deimede, C. Elmasides, “Separators for Lithium-Ion Batteries: A Review on the Production Processes and Recent Developments,” Energy Technol., vol. 3, pp. 453-468, 2015, doi: 10.1002/ente.201402215
  • [6] V. T. Bui, et al., “Multilayered PVDF-HFP Porous Separator via Phase Separation and Selective Solvent Etching for High Voltage Lithium-Ion Batteries,” Membranes, vol. 11, pp. 41, 2021, doi: 10.3390/membranes11010041
  • [7] A. C. M. de Moraes, et al., “Phase-Inversion Polymer Composite Separators Based on Hexagonal Boron Nitride Nanosheets for High-Temperature Lithium-Ion Batteries,” ACS Appl. Mater. Interfaces, vol. 12, pp. 8107-8114, 2020, doi: 10.1021/acsami.9b18134
  • [8] H. Y. Hwang, D. J. Kim, H. J. Kim, Y. T. Hong, S. Y. Nam, “Effect of nanoclay on properties of porous PVdF membranes,” Trans. Nonferrous Met. Soc. China, vol. 21, pp. 141-147, 2011, doi: 10.1016/s1003-6326(11)61078-9
  • [9] R. E. Sousa, et al., “Microstructural variations of poly(vinylidene fluoride co-hexafluoropropylene) and their influence on the thermal, dielectric and piezoelectric properties,” Polym. Test., vol. 40, pp. 245-255, 2014, doi: 10.1016/j.polymertesting.2014.09.012
  • [10] C. M. Costa, et al., “Preparation of Poly(vinylidene fluoride) Lithium-Ion Battery Separators and Their Compatibilization with Ionic Liquid - A Green Solvent Approach,” ChemistrySelect, vol. 2, pp. 5394-5402, 2017, doi: 10.1002/slct.201701028
  • [11] S. Wu, J. Ning, F. Jiang, J. Shi, F. Huang, “Ceramic Nanoparticle-Decorated Melt-Electrospun PVDF Nanofiber Membrane with Enhanced Performance as a Lithium-Ion Battery Separator,” ACS Omega, vol. 4, pp. 16309-16317, 2019, doi: 10.1021/acsomega.9b01541
  • [12] J. Zhang, B. Sun, X. Huang, S. Chen, G. Wang, “Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety,” Sci. Rep., vol. 4, pp. 6007, 2015, doi: 10.1038/srep06007
  • [13] M. J. Koh, et al., “Preparation and Characterization of Porous PVdF-HFP/clay Nanocomposite Membranes,” J. Mater. Sci. Technol., vol. 26, pp. 633-638, 2010, doi: https://doi.org/10.1016/S1005-0302(10)60098-9
  • [14] H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, X. Zhang, “A review of recent developments in membrane separators for rechargeable lithium-ion batteries,” Energy Environ. Sci., vol. 7, pp. 3857-3886, 2014, doi: 10.1039/c4ee01432d
  • [15] J. T. Jung, et al., “Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS),” J. Membr. Sci., vol. 514, pp. 250-263, 2016, doi: 10.1016/j.memsci.2016.04.069
  • [16] A. Bottino, G. Camera-Roda, G. Capannelli, S. Munari, “The formation of microporous polyvinylidene difluoride membranes by phase separation,” J. Membr. Sci., vol. 57, pp. 1-20, 1991, doi: https://doi.org/10.1016/S0376-7388(00)81159-X
  • [17] M. M. Tao, F. Liu, B. R. Ma, L. X. Xue, “Effect of solvent power on PVDF membrane polymorphism during phase inversion,” Desalination, vol. 316, pp. 137-145, 2013, doi: 10.1016/j.desal.2013.02.005
  • [18] M. Haponska, et al., “PVDF Membrane Morphology-Influence of Polymer Molecular Weight and Preparation Temperature,” Polymers, vol. 9, pp. 718, 2017, doi: 10.3390/polym9120718
  • [19] F. Liu, N. A. Hashim, Y. Liu, M. R. M. Abed, K. Li, “Progress in the production and modification of PVDF membranes,” J. Membr. Sci., vol. 375, pp. 1-27, 2011, doi: 10.1016/j.memsci.2011.03.014
  • [20] J. C. Barbosa, et al., “Metal–organic frameworks and zeolite materials as active fillers for lithium-ion battery solid polymer electrolytes,” Mater. Adv., vol. 2, pp. 3790-3805, 2021, doi: 10.1039/d1ma00244a
  • [21] R. Dutta, A. Kumar, “Probing the ionic transport dynamics in ionic liquid incorporated CuBTC-Metal-Organic Framework based PVdF-HFP nanocomposite membranes,” Solid State Sci., vol. 100, pp. 106115, 2020, doi: 10.1016/j.solidstatesciences.2020.106115
  • [22] P. Z. Moghadam, et al., “Development of a Cambridge Structural Database Subset: A Collection of Metal–Organic Frameworks for Past, Present, and Future,” Chem. Mater., vol. 29, pp. 2618-2625, 2017, doi: 10.1021/acs.chemmater.7b00441
  • [23] A. Valverde, et al., “Metal–Organic Framework Based PVDF Separators for High Rate Cycling Lithium-Ion Batteries,” ACS Appl. Energy Mater., vol. 3, pp. 11907-11919, 2020, doi: 10.1021/acsaem.0c02044
  • [24] J. C. Barbosa, et al., “Metal organic framework modified poly(vinylidene fluoride-co-hexafluoropropylene) separator membranes to improve lithium-ion battery capacity fading,” Chem. Eng. J., vol. 443, pp. 136329, 2022, doi: 10.1016/j.cej.2022.136329
  • [25] M. Dai, J. Shen, J. Zhang, G. Li, “A novel separator material consisting of ZeoliticImidazolate Framework-4 (ZIF-4) and its electrochemical performance for lithium-ions battery,” J. Power Sources, vol. 369, pp. 27-34, 2017, doi: 10.1016/j.jpowsour.2017.09.058
  • [26] P. Chen, et al., “Zeolitic imidazolate framework-67 based separator for enhanced high thermal stability of lithium ion battery,” J. Power Sources, vol. 400, pp. 325-332, 2018, doi: 10.1016/j.jpowsour.2018.08.005
  • [27] L. Tian, et al., “Efficient improvement of the lithium ionic conductivity for a polymer electrolyte via introducing porous metal–organic frameworks,” Chem. Commun., vol. 58, pp. 6717-6720, 2022, doi: 10.1039/D2CC01458K
  • [28] R. M. Rego, et al., “Cerium based UiO-66 MOF as a multipollutant adsorbent for universal water purification,” J. Hazard. Mater., vol. 416, pp. 125941, 2021, doi: 10.1016/j.jhazmat.2021.125941
  • [29] M. Lammert, et al., “Cerium-based metal organic frameworks with UiO-66 architecture: synthesis, properties and redox catalytic activity,” Chem. Commun., vol. 51, pp. 12578-12581, 2015, doi: 10.1039/c5cc02606g
  • [30] C. G. Ferreira, V. F. Cardoso, A. C. Lopes, G. Botelho, S. Lanceros-Méndez, “Tailoring microstructure and physical properties of poly(vinylidene fluoride–hexafluoropropylene) porous films,” J. Mater. Sci., vol. 50, pp. 5047-5058, 2015, doi: 10.1007/s10853-015-9054-5
  • [31] J. Teixeira, et al., “Effect of Polymer Dissolution Temperature and Conditioning Time on the Morphological and Physicochemical Characteristics of Poly(Vinylidene Fluoride) Membranes Prepared by Non-Solvent Induced Phase Separation,” Polymers, vol. 13, pp. 4062, 2021, doi: 10.3390/polym13234062
  • [32] D. L. Chinaglia, et al., “Influence of the solvent evaporation rate on the crystalline phases of solution-cast poly(vinylidene fluoride) films,” J. Appl. Polym. Sci., vol. 116, pp. 785-791, 2010, doi: https://doi.org/10.1002/app.31488
  • [33] D. Zhao, C. Cai, “Cerium-based UiO-66 metal-organic framework for synergistic dye adsorption and photodegradation: A discussion of the mechanism,” Dyes Pigments, vol. 185, pp. 108957, 2021, doi: 10.1016/j.dyepig.2020.108957
  • [34] F. Garkani Nejad, H. Beitollahi, I. Sheikhshoaie, "A UiO-66-NH(2) MOF/PAMAM Dendrimer Nanocomposite for Electrochemical Detection of Tramadol in the Presence of Acetaminophen in Pharmaceutical Formulations", Biosensors, vol. 13, pp. 2023, doi: 10.3390/bios13050514
  • [35] A. Bužarovska, et al., “PVDF/BaTiO3 composite foams with high content of β phase by thermally induced phase separation (TIPS),” J. Polym. Res., vol. 29, pp. 272, 2022, doi: 10.1007/s10965-022-03133-z
  • [36] C. M. Costa, Y. H. Lee, J. H. Kim, S. Y. Lee, S. Lanceros-Méndez, “Recent advances on separator membranes for lithium-ion battery applications: From porous membranes to solid electrolytes,” Energy Storage Mater., vol. 22, pp. 346-375, 2019, doi: 10.1016/j.ensm.2019.07.024
  • [37] K. Elamin, M. Shojaatalhosseini, O. Danyliv, A. Martinelli, J. Swenson, “Conduction mechanism in polymeric membranes based on PEO or PVdF-HFP and containing a piperidinium ionic liquid,” Electrochim. Acta, vol. 299, pp. 979-986, 2019, doi: 10.1016/j.electacta.2018.12.154
  • [38] H. Yang, N. Wu, “Ionic conductivity and ion transport mechanisms of solid‐state lithium‐ion battery electrolytes: A review,” Energy sci. eng., vol. 10, pp. 1643-1671, 2022, doi: 10.1002/ese3.1163
  • [39] K. Bicy, A. B. Gueye, D. Rouxel, N. Kalarikkal, S. Thomas, “Lithium-ion battery separators based on electrospun PVDF: A review,” Surf. Interfaces, vol. 31, pp. 101977, 2022, doi: https://doi.org/10.1016/j.surfin.2022.101977
  • [40] M. Yasar, P. Hassett, N. Murphy, A. Ivankovic, “Beta Phase Optimization of Solvent Cast PVDF as a Function of the Processing Method and Additive Content,” ACS Omega, vol. 9, pp. 26020-26029, 2024, doi: 10.1021/acsomega.4c01221
  • [41] Q. Wang, D. Shen, Z. Tu, S. Li, “Improved performance of lanthanide-doped UIO-66/Nafion hybrid proton exchange membrane for water electrolyzer,” Int. J. Hydrogen Energy, vol. 56, pp. 1249-1256, 2024, doi: 10.1016/j.ijhydene.2023.12.288
  • [42] J. Zahirifar, A. Hadi, J. Karimi-Sabet, A. Dastbaz, “Influence of hexagonal boron nitride nanosheets as the additives on the characteristics and performance of PVDF for air gap membrane distillation,” Desalination, vol. 460, pp. 81-91, 2019, doi: 10.1016/j.desal.2019.03.004
  • [43] S. Ali, et al., “Highly Efficient PVDF-HFP/Colloidal Alumina Composite Separator for High-Temperature Lithium-Ion Batteries,” Adv. Mater. Interfaces, vol. 5, pp. 1701147, 2018, doi: 10.1002/admi.201701147
  • [44] K. Prabakaran, S. Mohanty, S. K. Nayak, “Influence of surface modified TiO2 nanoparticles on dielectric properties of PVdF–HFP nanocomposites,” J. Mater. Sci.-Mater. Electron., vol. 25, pp. 4590-4602, 2014, doi: 10.1007/s10854-014-2209-3
  • [45] E. Demirel, İ. S. Üçel, “Modification of PVDF Membranes Using Dopamine/Zinc Oxide for Lead Removal from Aqueous Media,” Open Nano, vol. 7, pp. 53-73, 2022, doi: 10.56171/ojn.1058222
  • [46] J. D. Evans, Y. Sun, P. S. Grant, “Sequential Deposition of Integrated Cathode-Inorganic Separator-Anode Multilayers for High Performance Li-Ion Batteries,” ACS Appl. Mater. Interfaces., vol. 14, pp. 34538-34551, 2022, doi: 10.1021/acsami.2c03828
  • [47] W. Luo, et al., “A review of advanced separators for rechargeable batteries,” Power Sources, vol. 509, pp. 230372, 2021, doi: 10.1016/j.jpowsour.2021.230372
  • [48] M. Waqas, et al., “High‐Performance PE‐BN/PVDF‐HFP Bilayer Separator for Lithium‐Ion Batteries,” Adv. Mater. Interfaces, vol. 6, pp. 1801330, 2019, doi: 10.1002/admi.201801330
  • [49] K. Gohel, D. K. Kanchan, “Ionic conductivity and relaxation studies in PVDF-HFP:PMMA-based gel polymer blend electrolyte with LiClO4 salt,” J. Adv. Dielectr., vol. 08, pp. 1850005, 2018, doi: 10.1142/s2010135x18500054
  • [50] H. Yang, X. Shi, S. Chu, Z. Shao, Y. Wang, “Design of Block-Copolymer Nanoporous Membranes for Robust and Safer Lithium-Ion Battery Separators,” Adv Sci (Weinh), vol. 8, pp. 2003096, 2021, doi: 10.1002/advs.202003096
  • [51] J.-D. Xie, C.-C. Fu, C.-C. Liao, R.-S. Juang, “Sol–gel deposition of silica nanospheres onto polymeric separators for improved performance of Li-ion batteries,” J. Taiwan Inst. Chem. Eng., vol. 81, pp. 199-205, 2017, doi: 10.1016/j.jtice.2017.10.031
  • [52] A. Liu, et al., “A renewable membrane with high ionic conductivity and thermal stability for Li-ion batteries,” J. Power Sources, vol. 521, pp. 2022, doi: 10.1016/j.jpowsour.2021.230947
  • [53] C. Shi, et al., “A Modified Ceramic-Coating Separator with High-Temperature Stability for Lithium-Ion Battery,” Polymers, vol. 9, pp. 2017, doi: 10.3390/polym9050159
  • [54] Y. Hwang, M. Kim, “Effect of a Polypropylene Separator with a Thin Electrospun Ceramic/Polymer Coating on the Thermal and Electrochemical Properties of Lithium-Ion Batteries,” Polymers, vol. 16, pp. 2024, doi: 10.3390/polym16182627
There are 54 citations in total.

Details

Primary Language English
Subjects Composite and Hybrid Materials, Material Characterization, Materials Engineering (Other)
Journal Section Research Article
Authors

Umut Savacı 0000-0002-5801-9666

Project Number Project No: 22ADP416
Submission Date July 15, 2025
Acceptance Date September 25, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Issue: 063

Cite

IEEE U. Savacı, “Effects of processing parameters and metal-organic framework addition on the properties of PVDF-HFP membranes”, JSR-A, no. 063, pp. 1–13, December2025, doi: 10.59313/jsr-a.1743283.