Research Article
BibTex RIS Cite

Flight control of a 3DOF quadrotor hover by state feedback with integral action

Year 2025, Issue: 063, 121 - 138, 30.12.2025
https://doi.org/10.59313/jsr-a.1798667

Abstract

This study presents the design and experimental validation of a state feedback controller with integral action for a 3DOF (3-degree-of-freedom) quadrotor hover system. Unlike conventional state feedback structures that suffer from steady-state error and limited robustness, the proposed controller integrates an additional integral term to eliminate the steady-state error and improve fault-tolerant and disturbance rejection performance. In the controller design phase, the linear quadratic regulator framework is used. After the design phase, the proposed controller is implemented in both simulations and real-time experiments to show that the steady-state errors are successfully eliminated. Then, a series of robustness tests is carried out to assess the tracking performance of the controller under degraded conditions, including actuator fault scenarios and external disturbance rejection. The results show that the proposed controller guarantees closed-loop stability and achieves accurate attitude tracking along with successful motor fault compensation and external disturbance rejection. Furthermore, the real-time experimental results closely match the simulation results, which validates the real-time applicability of the proposed controller. Overall, the study presents a robust solution for attitude control of a quadrotor hover, which provides a valuable methodological and experimental contribution to the development of fault-tolerant control strategies for unmanned aerial vehicles.

References

  • [1] N. S. Özbek, M. Önkol, and M. Ö. Efe, “Feedback control strategies for quadrotor-type aerial robots: A survey,” Trans. Inst. Meas. Control, vol. 38, no. 5, pp. 529–554, 2016, doi: 10.1177/0142331215608427.
  • [2] S. A. H. Mohsan, N. Q. H. Othman, Y. Li, M. H. Alsharif, and M. A. Khan, “Unmanned aerial vehicles (UAVs): Practical aspects, applications, open challenges, security issues, and future trends,” Intell. Serv. Robot., vol. 16, no. 1, pp. 109–137, 2023, doi: 10.1007/s11370-022-00452-4.
  • [3] A. Asignacion and S. Satoshi, “Historical and current landscapes of autonomous quadrotor control: An early-career researchers’ guide,” Drones, vol. 8, no. 3, pp. 1–35, 2024, doi: 10.3390/drones8030072.
  • [4] A. K. Al-Jiboory, “Adaptive quadrotor control using online dynamic mode decomposition,” Eur. J. Control, vol. 80, p. 101117, 2024, doi: 10.1016/j.ejcon.2024.101117.
  • [5] R. L. Pereira and K. H. Kienitz, “Experimental investigation of nonlinear controllers applied to a 3DOF hover: SMC via ALQR approach,” in Proc. 23rd Medit. Conf. Control Autom. (MED), 2015, pp. 520–524, doi: 10.1109/MED.2015.7158799.
  • [6] Q. Hu, L. Tian, Q. Fei, and Q. Geng, “Attitude control research for quad-rotor UAV,” in Proc. 5th Int. Conf. Intell. Control Inf. Process. (ICICIP), 2014, pp. 41–47, doi: 10.1109/ICICIP.2014.7010136.
  • [7] P. Xu, Y. Pu, and R. Guo, “Sliding mode fault-tolerant control for uncertain time-delay systems,” in Proc. 34th Chin. Control Conf. (CCC), 2015, pp. 6403–6407, doi: 10.1109/ChiCC.2015.7260648.
  • [8] Q. Gao, M. Du, and Y. Ji, “The controller design of quadrotor UAV based on internal model control,” in Proc. 36th Chin. Control Conf. (CCC), 2017, pp. 505–510, doi: 10.23919/ChiCC.2017.8027386.
  • [9] I. A. A. Prado, M. de F. V. Pereira, D. F. de Castro, D. A. dos Santos, and J. M. Balthazar, “Experimental evaluation of HJB optimal controllers for the attitude dynamics of a multirotor aerial vehicle,” ISA Trans., vol. 77, pp. 188–200, 2018, doi: 10.1016/j.isatra.2018.04.015.
  • [10] A. Ateş and M. Akpamukçu, “Modified monarch butterfly optimization with distribution functions and its application for 3 DOF hover flight system,” Neural Comput. Appl., pp. 1–26, 2022, doi: 10.1007/s00521-022-07166-4.
  • [11] L. M. Argentim, W. C. Rezende, P. E. Santos, and R. A. Aguiar, “PID, LQR and LQR-PID on a quadcopter platform,” in Proc. Int. Conf. Informat. Electron. Vis. (ICIEV), 2013, pp. 1–6, doi: 10.1109/ICIEV.2013.6572698.
  • [12] F. Ahmad, P. Kumar, A. Bhandari, and P. P. Patil, “Simulation of the quadcopter dynamics with LQR-based control,” Mater. Today Proc., vol. 24, pp. 326–332, 2020, doi: 10.1016/j.matpr.2020.04.282.
  • [13] J. Apkarian and M. Lévis, “Laboratory Guide: 3 DOF Hover Experiment for MATLAB/Simulink Users,” Quanser Inc., Markham, ON, Canada, 2013.
  • [14] A. S. Elkhatem and S. N. Engin, “Robust LQR and LQR-PI control strategies based on adaptive weighting matrix selection for a UAV position and attitude tracking control,” Alexandria Eng. J., vol. 61, no. 8, pp. 6275–6292, 2022, doi: 10.1016/j.aej.2022.01.048.
  • [15] L. Martins, C. Cardeira, and P. Oliveira, “Linear quadratic regulator for trajectory tracking of a quadrotor,” in Preprints 21st IFAC Symp. Autom. Control Aerosp. (ACA 2019), 2019, pp. 176–181, doi: 10.1016/j.ifacol.2019.11.048.
  • [16] V. Deshpande and Y. Zhang, “Integral action model predictive control with actuator fault estimation,” IFAC-PapersOnLine, vol. 55, no. 6, pp. 181–186, 2022, doi: 10.1016/j.ifacol.2022.07.031.
  • [17] M. Moghadam, “Fault tolerant control of a quadrotor UAV,” Dept. Mech. Eng., McGill Univ., Montreal, QC, Canada, 2022.
  • [18] X. Hu, B. Wang, Y. Shen, Y. Fu, and N. Li, “Disturbance observer-enhanced adaptive fault-tolerant control of a quadrotor UAV against actuator faults and disturbances,” Drones, vol. 7, no. 8, p. 541, 2023, doi: 10.3390/drones7080541.
  • [19] Y. Guo, B. Jiang, and Y. Zhang, “A novel robust attitude control for quadrotor aircraft subject to actuator faults and wind gusts,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 292–300, 2018, doi: 10.1109/JAS.2017.7510679.
  • [20] F. Sallem, B. Dahhou, and A. Kamoun, “On the representation of actuator faults diagnosis and systems invertibility,” Int. J. Mech. Mechatronics Eng., vol. 8, no. 2, pp. 379–390, 2014, doi: 10.5281/zenodo.1090946.
  • [21] X. Zhang, B. Jiang, F. Chen, and K. Zhang, “A reliable tracking control for the 3-DOF hovering system of quadrotor with multi-actuator faults,” in Proc. 25th Chin. Control Decis. Conf. (CCDC), 2013, pp. 4961–4966, doi: 10.1109/CCDC.2013.6561742.
  • [22] A. González, V. Balaguer, P. García, and Á. Cuenca, “Gain-scheduled predictive extended state observer for time-varying delays systems with mismatched disturbances,” ISA Trans., vol. 84, pp. 206–213, 2019, doi: 10.1016/j.isatra.2018.09.024.
  • [23] M. Kahouadji, M. R. Mokhtari, A. Choukchou-Braham, and B. Cherki, “Real-time attitude control of 3 DOF quadrotor UAV using modified super twisting algorithm,” J. Franklin Inst., vol. 357, no. 5, pp. 2681–2695, 2020, doi: 10.1016/j.jfranklin.2020.01.001.
  • [24] P. C. Young and J. C. Willems, “An approach to the linear multivariable servomechanism problem,” Int. J. Control, vol. 15, no. 5, pp. 961–979, 1972, doi: 10.1080/00207177208932211.
  • [25] K. Ogata, Modern Control Engineering. Upper Saddle River, NJ, USA: Pearson Education, 2008.
  • [26] S. J. Chacko, N. P. C., and R. J. Abraham, “Optimizing LQR controllers: A comparative study,” Results Control Optim., vol. 14, p. 100387, 2024, doi: 10.1016/j.rico.2024.100387.
There are 26 citations in total.

Details

Primary Language English
Subjects Control Engineering, Aircraft Performance and Flight Control Systems
Journal Section Research Article
Authors

Ramazan Macit 0000-0002-4768-5479

Süleyman Mert Özer 0000-0001-5019-629X

Submission Date October 7, 2025
Acceptance Date December 15, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Issue: 063

Cite

IEEE R. Macit and S. M. Özer, “Flight control of a 3DOF quadrotor hover by state feedback with integral action”, JSR-A, no. 063, pp. 121–138, December2025, doi: 10.59313/jsr-a.1798667.