Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Sayı: 045, 1 - 11, 31.12.2020

Öz

Kaynakça

  • [1] Vilain, S. and Brözel, V. S., (2006), Multivariate approach to comparing whole-cell proteomes of Bacillus cereus indicates a biofilm-specific proteome, Journal of Proteome Research, 5(8), 1924-1930.
  • [2] Scheldeman, P., Pil, A., Herman, L., De Vos, P. and Heyndrickx, M., (2005), Incidence and diversity of potentially highly heat-resistant spores isolated at dairy farms, Applied and Environmental Microbiology, 71, 1480-1494.
  • [3] Zhao, Y., Caspers, M. P., Metselaar, K.I., De Boer, P., Roeselers, G., Moezelaar, R., Groot, M.N., Montijn, R.C., Abee, T. and Kort, R., (2013), Abiotic and microbiotic factors controlling biofilm formation by thermophilic sporeformers, Applied and Environmental Microbiology, 79, 5652-5660.
  • [4] Lücking, G., Stoeckel, M., Atamer, Z., Hinrichs, J. and Ehling-Schulz, M., (2013), Characterization of aerobic spore-forming bacteria associated with industrial dairy processing environments and product spoilage, International Journal of Food Microbiology, 166(2), 270-279.
  • [5] Vivas, A., Vörös, I., Biró, B., Campos, E., Barea, J. M. and Azcón, R., (2003), Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp. isolated from cadmium polluted soil under increasing cadmium level, Environmental Pollution, 126(2), 179-189.
  • [6] De Clerck, E. and De Vos, P., (2002), Study of the bacterial load in a gelatine production process focussed on Bacillus and related endosporeforming genera, Systematic and Applied Microbiology, 25(4), 611-617.
  • [7] Alvarez-Ordóñez, A., Coughlan, L. M., Briandet, R. and Cotter, P. D., (2019), Biofilms in food processing environments: Challenges and opportunities, Annual Review of Food Science and Technology, 10, 173-195.
  • [8] Sjöberg, A. M., Sillanpää, J., Sipiläinen-Malm, T., Weber, A. and Raaska, L., (2002), An implementation of the HACCP system in the production of food-packaging material, Journal of Industrial Microbiology and Biotechnology, 28(4), 213-218.
  • [9] Pereira, A. P. M. and Sant’Ana, A.S., (2018), Diversity and fate of spore forming bacteria in cocoa powder, milk powder, starch and sugar during processing: A review, Trends in Food Science and Technology, 76, 101-118.
  • [10] Logan, N. A., (2012), Bacillus and relatives in foodborne illness, Journal of Applied Microbiology, 112, 417-429.
  • [11] Gopal, N., Hill, C., Ross, P. R., Beresford, T. P., Fenelon, M. A. and Cotter, P. D., (2015), The prevalence and control of Bacillus and related spore-forming bacteria in the dairy industry, Frontiers in Microbiology, 6, 1418.
  • [12] Sanders, M. E., Morelli, L. and Tompkins, T. A., (2003), Sporeformers as human probiotics: Bacillus, Sporolactobacillus, and Brevibacillus, Comprehensive Reviews in Food Science and Food Safety, 2(3), 101-110.
  • [13] Ogarkov, O. B., Badleeva, V., Belkova, N. L., Adelshin, R. V., Tsyrenova, T. A., Khromova, P. A., Sinkov, V. V, Kostjunin, K. Y., Dashatsyrenova, S. B., Koshcheyev, M. E, Zarbuev, A. N. and Zhdanove, S. N., (2017), The phenomenon of the formation of biofilms by Brevibacillus spp. and Bacillus spp. in the presence of clinical strains of Mycobacterium tuberculosis, Molecular Genetics, Microbiology and Virology, 32(3), 148-154.
  • [14] Logan, N. A., Forsyth, G., Lebbe, L., Goris, J., Heyndrickx, M., Balcaen, A., Verhelst, A., Falsen, E., Ljungh, A., Hansson, H. B. and De Vos, P., (2002), Polyphasic identification of Bacillus and Brevibacillus strains from clinical, dairy and industrial specimens and proposal of Brevibacillus invocatus sp. nov., International Journal of Systematic and Evolutionary Microbiology, 52(3), 953-966.
  • [15] Kilic, T. and Cihan A. C., (2020), Biofilm formation and control of facultative thermophile Brevibacillus agri D505b, Communications Faculty of Sciences University of Ankara Series C Biology, 29(1), 119-130.
  • [16] Cihan, A. C., Karaca, B., Ozel, P. B. and Kilic, T., (2017), Determination of the biofilm production capacities and characteristics of members belonging to Bacillaceae family, World Journal of Microbiology and Biotechnology, 33, 118.
  • [17] Jakubovics, N. S., Shields, R. C., Rajarajan, N. and Burgess, J. G., (2013), Life after death: the critical role of extracellular DNA in microbial biofilms, Letters in Applied Microbiology, 57(6), 467-475.
  • [18] Cihan, A. C., Tekin, N., Ozcan, B. and Cokmus, C., (2012), The genetic diversity of genus Bacillus and the related genera revealed by 16S rRNA gene sequences and ardra analyses isolated from geothermal regions of turkey, Brazilian Journal of Microbiology, 43(1), 309-324.
  • [19] Woodward, M. J., Sojka, M., Sprigings, K. A. and Humphrey, T.J., (2000), The role of SEF14 and SEF17fimbriae in the adherence of Salmonella enteric serotype Enteritidis to inanimate surfaces, Journal of Medical Microbiology, 49(5), 481-487.
  • [20] Stepanović, S., Vuković, D., Dakić, I., Savić, B. and Švabić-Vlahović, M., (2000), A modified microtiter-plate test for quantification of staphylococcal biofilm formation, Journal of Microbiological Methods, 40(2), 175-179.
  • [21] Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F., (1951), A colorimetric method for the determination of sugar, Nature, 168(4265), 167.
  • [22] Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J., (1951), Protein measurement with the Folin phenol reagent, Journal of Biological Chemistry, 193, 265-275. [23] Wilson, K., (2001), Preparation of genomic DNA from bacteria, Current Protocols in Molecular Biology, 56, 2-4.
  • [24] Grande, R., Di Giulio, M., Bessa, L. J., Di Campli, E., Baffoni, M., Guarnieri, S. and Cellini, L., (2010), Extracellular DNA in Helicobacter pylori biofilm: a backstairs rumour, Journal of Applied Microbiology, 110(2), 490-498.
  • [25] Elhariry, H. M., (2008), Biofilm formation by endospore-forming bacilli on plastic surface under some food-related and environmental stress conditions, Global Journal of Biotechnology and Biochemistry, 3(2), 69-78.
  • [26] Ibáñez de Aldecoa, A. L., Zafra, O. and González-Pastor, J. E., (2017), Mechanisms and regulation of extracellular DNA release and its biological roles in microbial communities, Frontiers in Microbiology, 8, 1390.
  • [27] Catlin, B. W. and Cunningham, L. S., (1958), Studies of extracellular and intracellular bacterial deoxyribonucleic acids, Microbiology, 19, 522-539.
  • [28] Nijland, R., Hall, M. J. and Burgess, J. G., (2010), Dispersal of biofilms by secreted, matrix degrading, bacterial DNase, PloS One, 5, e15668.
  • [29] Kilic, T., Karaca, B., Ozel, B. P., Ozcan, B., Cokmus, C. and Coleri Cihan, A., (2017), Biofilm characteristics and evaluation of the sanitation procedures of thermophilic Aeribacillus pallidus E334 biofilms, Biofouling, 33(4), 352-367.
  • [30] Grande, R., Di Marcantonio, M. C., Robuffo, I., Pompilio, A., Celia, C., Di Marzio, L., Paolino, D., Codagnone, M., Muraro, R., Stoodley, P., Hall-Stoodley, L. and Mincione, G., (2015), Helicobacter pylori ATCC 43629/NCTC 11639 outer membrane vesicles (OMVs) from biofilm and planktonic phase associated with extracellular DNA (eDNA), Frontiers in Microbiology, 6, 1369.
  • [31] Brown, L., Wolf, J. M., Prados-Rosales, R. and Casadevall, A., (2015), Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi, Nature Reviews Microbiology, 13(10),620-630.
  • [32] Gill, S., Catchpole, R. and Forterre, P., (2018), Extracellular membrane vesicles in the three domains of life and beyond, FEMS Microbiology Reviews, 43, 273-303.
  • [33] Rivera, J., Cordero, R. J., Nakouzi, A.S., Frases, S., Nicola, A. and Casadevall, A., (2010), Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins, Proceedings of the National Academy of Sciences, 107(44), 19002-19007.
  • [34] Soler, N., Marguet, E., Verbavatz, J. M. and Forterre, P., (2008), Virus-like vesicles and extracellular DNA produced by hyperthermophilic archaea of the order Thermococcales, Research in Microbiology, 159(5), 390-399.
  • [35] Blesa, A. and Berenguer, J., (2015), Contribution of vesicle-protected extracellular DNA to horizontal gene transfer in Thermus spp., International Microbiology, 18, 177-187. [36] Blesa, A., Averhoff, B. and Berenguer, J., (2018), Horizontal gene transfer in Thermus spp., Current Issues in Molecular Biology, 29, 23-36.
  • [37] Martins, M., Uppuluri, P., Thomas, D. P., Cleary, I.A., Henriques, M., Lopez-Ribot, J. L. and Oliveira, R., (2010), Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms, Mycopathologia, 169, 323-331.
  • [38] Ali Mohammed, M. M., Nerland, A. H., Al-Haroni, M. and Bakken, V., (2013), Characterization of extracellular polymeric matrix, and treatment of Fusobacterium nucleatum and Porphyromonas gingivalis biofilms with DNase I and proteinase K, Journal of Oral Microbiology, 5 (1), 20015.

THE EFFECT OF DNASE I, RNASE A, AND PROTEINASE K ON FACULTATIVE THERMOPHILE BREVIBACILLUS AGRI D505B BIOFILMS

Yıl 2020, Sayı: 045, 1 - 11, 31.12.2020

Öz

Thermophilic bacteria have been isolated from man-made thermal habitats and natural thermal habitats. Brevibacillus agri D505b was isolated from the geothermal region in Turkey. Thermophilic bacilli can form biofilm in areas such as dairy manufacturing plants, water systems, paper-machine, and can create serious problem due to their spore-forming. Therefore, determining the biofilm-forming properties of these bacteria is very significant for the areas. The aim of this study was to determine the effect of environmental conditions on planktonic growth and biofilm formation, the concentrations of protein, carbohydrate, and extracellular DNA (eDNA) from extracellular polymeric substances (EPSs), and the effects of DNase I, RNase A and proteinase K on eDNA in the biofilm matrix of the isolate. As a result, optimal values of the isolate for planktonic growth and biofilm formation were determined as pH 7.0, 1% NaCl, 50oC, and pH 9.0, 0% NaCl, 45oC, respectively. Genomic DNA (gDNA) and eDNA were isolated, then were treated with DNase I, RNase A and proteinase K. The gDNA was only all degraded by DNase I. However, eDNA was not affected by DNase I, RNase A and proteinase K. Moreover, eDNA was determined to be resistant to all the enzymes tested in this study. The eDNA might be protected by EPS components and/or extracellular membrane vesicles (EVs) structures. In addition, the molecular weights of the gDNA and eDNA were calculated larger than 20 kb. Thus, the presence of eDNA in the biofilm matrix of B. agri was confirmed with agarose gel imaging and spectrophotometric analysis.

Kaynakça

  • [1] Vilain, S. and Brözel, V. S., (2006), Multivariate approach to comparing whole-cell proteomes of Bacillus cereus indicates a biofilm-specific proteome, Journal of Proteome Research, 5(8), 1924-1930.
  • [2] Scheldeman, P., Pil, A., Herman, L., De Vos, P. and Heyndrickx, M., (2005), Incidence and diversity of potentially highly heat-resistant spores isolated at dairy farms, Applied and Environmental Microbiology, 71, 1480-1494.
  • [3] Zhao, Y., Caspers, M. P., Metselaar, K.I., De Boer, P., Roeselers, G., Moezelaar, R., Groot, M.N., Montijn, R.C., Abee, T. and Kort, R., (2013), Abiotic and microbiotic factors controlling biofilm formation by thermophilic sporeformers, Applied and Environmental Microbiology, 79, 5652-5660.
  • [4] Lücking, G., Stoeckel, M., Atamer, Z., Hinrichs, J. and Ehling-Schulz, M., (2013), Characterization of aerobic spore-forming bacteria associated with industrial dairy processing environments and product spoilage, International Journal of Food Microbiology, 166(2), 270-279.
  • [5] Vivas, A., Vörös, I., Biró, B., Campos, E., Barea, J. M. and Azcón, R., (2003), Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp. isolated from cadmium polluted soil under increasing cadmium level, Environmental Pollution, 126(2), 179-189.
  • [6] De Clerck, E. and De Vos, P., (2002), Study of the bacterial load in a gelatine production process focussed on Bacillus and related endosporeforming genera, Systematic and Applied Microbiology, 25(4), 611-617.
  • [7] Alvarez-Ordóñez, A., Coughlan, L. M., Briandet, R. and Cotter, P. D., (2019), Biofilms in food processing environments: Challenges and opportunities, Annual Review of Food Science and Technology, 10, 173-195.
  • [8] Sjöberg, A. M., Sillanpää, J., Sipiläinen-Malm, T., Weber, A. and Raaska, L., (2002), An implementation of the HACCP system in the production of food-packaging material, Journal of Industrial Microbiology and Biotechnology, 28(4), 213-218.
  • [9] Pereira, A. P. M. and Sant’Ana, A.S., (2018), Diversity and fate of spore forming bacteria in cocoa powder, milk powder, starch and sugar during processing: A review, Trends in Food Science and Technology, 76, 101-118.
  • [10] Logan, N. A., (2012), Bacillus and relatives in foodborne illness, Journal of Applied Microbiology, 112, 417-429.
  • [11] Gopal, N., Hill, C., Ross, P. R., Beresford, T. P., Fenelon, M. A. and Cotter, P. D., (2015), The prevalence and control of Bacillus and related spore-forming bacteria in the dairy industry, Frontiers in Microbiology, 6, 1418.
  • [12] Sanders, M. E., Morelli, L. and Tompkins, T. A., (2003), Sporeformers as human probiotics: Bacillus, Sporolactobacillus, and Brevibacillus, Comprehensive Reviews in Food Science and Food Safety, 2(3), 101-110.
  • [13] Ogarkov, O. B., Badleeva, V., Belkova, N. L., Adelshin, R. V., Tsyrenova, T. A., Khromova, P. A., Sinkov, V. V, Kostjunin, K. Y., Dashatsyrenova, S. B., Koshcheyev, M. E, Zarbuev, A. N. and Zhdanove, S. N., (2017), The phenomenon of the formation of biofilms by Brevibacillus spp. and Bacillus spp. in the presence of clinical strains of Mycobacterium tuberculosis, Molecular Genetics, Microbiology and Virology, 32(3), 148-154.
  • [14] Logan, N. A., Forsyth, G., Lebbe, L., Goris, J., Heyndrickx, M., Balcaen, A., Verhelst, A., Falsen, E., Ljungh, A., Hansson, H. B. and De Vos, P., (2002), Polyphasic identification of Bacillus and Brevibacillus strains from clinical, dairy and industrial specimens and proposal of Brevibacillus invocatus sp. nov., International Journal of Systematic and Evolutionary Microbiology, 52(3), 953-966.
  • [15] Kilic, T. and Cihan A. C., (2020), Biofilm formation and control of facultative thermophile Brevibacillus agri D505b, Communications Faculty of Sciences University of Ankara Series C Biology, 29(1), 119-130.
  • [16] Cihan, A. C., Karaca, B., Ozel, P. B. and Kilic, T., (2017), Determination of the biofilm production capacities and characteristics of members belonging to Bacillaceae family, World Journal of Microbiology and Biotechnology, 33, 118.
  • [17] Jakubovics, N. S., Shields, R. C., Rajarajan, N. and Burgess, J. G., (2013), Life after death: the critical role of extracellular DNA in microbial biofilms, Letters in Applied Microbiology, 57(6), 467-475.
  • [18] Cihan, A. C., Tekin, N., Ozcan, B. and Cokmus, C., (2012), The genetic diversity of genus Bacillus and the related genera revealed by 16S rRNA gene sequences and ardra analyses isolated from geothermal regions of turkey, Brazilian Journal of Microbiology, 43(1), 309-324.
  • [19] Woodward, M. J., Sojka, M., Sprigings, K. A. and Humphrey, T.J., (2000), The role of SEF14 and SEF17fimbriae in the adherence of Salmonella enteric serotype Enteritidis to inanimate surfaces, Journal of Medical Microbiology, 49(5), 481-487.
  • [20] Stepanović, S., Vuković, D., Dakić, I., Savić, B. and Švabić-Vlahović, M., (2000), A modified microtiter-plate test for quantification of staphylococcal biofilm formation, Journal of Microbiological Methods, 40(2), 175-179.
  • [21] Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F., (1951), A colorimetric method for the determination of sugar, Nature, 168(4265), 167.
  • [22] Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J., (1951), Protein measurement with the Folin phenol reagent, Journal of Biological Chemistry, 193, 265-275. [23] Wilson, K., (2001), Preparation of genomic DNA from bacteria, Current Protocols in Molecular Biology, 56, 2-4.
  • [24] Grande, R., Di Giulio, M., Bessa, L. J., Di Campli, E., Baffoni, M., Guarnieri, S. and Cellini, L., (2010), Extracellular DNA in Helicobacter pylori biofilm: a backstairs rumour, Journal of Applied Microbiology, 110(2), 490-498.
  • [25] Elhariry, H. M., (2008), Biofilm formation by endospore-forming bacilli on plastic surface under some food-related and environmental stress conditions, Global Journal of Biotechnology and Biochemistry, 3(2), 69-78.
  • [26] Ibáñez de Aldecoa, A. L., Zafra, O. and González-Pastor, J. E., (2017), Mechanisms and regulation of extracellular DNA release and its biological roles in microbial communities, Frontiers in Microbiology, 8, 1390.
  • [27] Catlin, B. W. and Cunningham, L. S., (1958), Studies of extracellular and intracellular bacterial deoxyribonucleic acids, Microbiology, 19, 522-539.
  • [28] Nijland, R., Hall, M. J. and Burgess, J. G., (2010), Dispersal of biofilms by secreted, matrix degrading, bacterial DNase, PloS One, 5, e15668.
  • [29] Kilic, T., Karaca, B., Ozel, B. P., Ozcan, B., Cokmus, C. and Coleri Cihan, A., (2017), Biofilm characteristics and evaluation of the sanitation procedures of thermophilic Aeribacillus pallidus E334 biofilms, Biofouling, 33(4), 352-367.
  • [30] Grande, R., Di Marcantonio, M. C., Robuffo, I., Pompilio, A., Celia, C., Di Marzio, L., Paolino, D., Codagnone, M., Muraro, R., Stoodley, P., Hall-Stoodley, L. and Mincione, G., (2015), Helicobacter pylori ATCC 43629/NCTC 11639 outer membrane vesicles (OMVs) from biofilm and planktonic phase associated with extracellular DNA (eDNA), Frontiers in Microbiology, 6, 1369.
  • [31] Brown, L., Wolf, J. M., Prados-Rosales, R. and Casadevall, A., (2015), Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi, Nature Reviews Microbiology, 13(10),620-630.
  • [32] Gill, S., Catchpole, R. and Forterre, P., (2018), Extracellular membrane vesicles in the three domains of life and beyond, FEMS Microbiology Reviews, 43, 273-303.
  • [33] Rivera, J., Cordero, R. J., Nakouzi, A.S., Frases, S., Nicola, A. and Casadevall, A., (2010), Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins, Proceedings of the National Academy of Sciences, 107(44), 19002-19007.
  • [34] Soler, N., Marguet, E., Verbavatz, J. M. and Forterre, P., (2008), Virus-like vesicles and extracellular DNA produced by hyperthermophilic archaea of the order Thermococcales, Research in Microbiology, 159(5), 390-399.
  • [35] Blesa, A. and Berenguer, J., (2015), Contribution of vesicle-protected extracellular DNA to horizontal gene transfer in Thermus spp., International Microbiology, 18, 177-187. [36] Blesa, A., Averhoff, B. and Berenguer, J., (2018), Horizontal gene transfer in Thermus spp., Current Issues in Molecular Biology, 29, 23-36.
  • [37] Martins, M., Uppuluri, P., Thomas, D. P., Cleary, I.A., Henriques, M., Lopez-Ribot, J. L. and Oliveira, R., (2010), Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms, Mycopathologia, 169, 323-331.
  • [38] Ali Mohammed, M. M., Nerland, A. H., Al-Haroni, M. and Bakken, V., (2013), Characterization of extracellular polymeric matrix, and treatment of Fusobacterium nucleatum and Porphyromonas gingivalis biofilms with DNase I and proteinase K, Journal of Oral Microbiology, 5 (1), 20015.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Articles
Yazarlar

Tuğba Kılıç Bu kişi benim 0000-0002-5474-0288

Arzu Colerı Cıhan Bu kişi benim 0000-0002-7289-6251

Yayımlanma Tarihi 31 Aralık 2020
Gönderilme Tarihi 29 Ocak 2020
Yayımlandığı Sayı Yıl 2020 Sayı: 045

Kaynak Göster

IEEE T. Kılıç ve A. Colerı Cıhan, “THE EFFECT OF DNASE I, RNASE A, AND PROTEINASE K ON FACULTATIVE THERMOPHILE BREVIBACILLUS AGRI D505B BIOFILMS”, JSR-A, sy. 045, ss. 1–11, Aralık 2020.