Theoretical Article
BibTex RIS Cite

INFLUENCE of SPINNING TOPOLOGICAL DEFECT on the LANDAU LEVELS ofRELATIVISTIC SPIN-0 PARTICLES

Year 2022, Issue: 050, 245 - 253, 30.09.2022

Abstract

We investigate relativistic Landau quantization of spinless particle in three dimensional space-time induced by topological defect with spin through acquiring non-perturbative solution of the corresponding Klein-Gordon equation. The obtained results allow us to analyze the alterations stemming from the background geometry on the spectrum. We observe that the background geometry can be responsible not only for shifts on the relativistic Landau levels but also for symmetry breaking of the particle-antiparticle states provided that the defect possesses non-zero spin.

Thanks

The author thanks kind referees for helpful comments.

References

  • [1] Birrell, N.D. and Davies, P.C.W., (1884), Quantum fields in curved space, Cambridge university press, Reprint edition, p 352.
  • [2] Brandenberger, R.H., (1985), Quantum field theory methods and inflationary universe models, Reviews of Modern Physics, 57, 1.
  • [3] DeWitt, B.S., (1975), Quantum field theory in curved spacetime, Physics Reports, 19, 295--357.
  • [4] DeWitt, B.S., (1957), Dynamical theory in curved spaces. I. A review of the classical and quantum action principles, Reviews of modern physics, 29, 377.
  • [5] Davies, P.C.W., (1976), Quantum field theory in curved space-time, Nature, 263, 377--380.
  • [6] Guvendi, A. and Sucu, Y., (2020), An interacting fermion-antifermion pair in the spacetime background generated by static cosmic string, Physics Letters B, 811, 135960.
  • [7] Anandan, J., (1981), Sagnac effect in relativistic and nonrelativistic physics, Physical Review D, 24, 338.
  • [8] Guvendi, A. and Hassanabadi, H., (2021), Relativistic Vector Bosons with Non-minimal Coupling in the Spinning Cosmic String Spacetime, Few-Body Systems, 62, 1—8.
  • [9] Dogan, S.G. and Sucu, Y., (2019), Quasinormal modes of Dirac field in 2+ 1 dimensional gravitational wave background, Physics Letters B, 797, 134839.
  • [10] Ahmed, F., (2019), Linear confinement of a scalar and spin-0 particle in a topologically trivial flat Gödel-type space-time, European Physical Journal C, 79, 1--13.
  • [11] Guvendi, A., (2021), Effects of Rotating Frame on a Vector Boson Oscillator, Sakarya University Journal of Science, 25, 847--853.
  • [12] Parker, L., (1980), One-electron atom in curved space-time, Physical Review Letters, 44, 1559.
  • [13] Zare, S., Hassanabadi, H. and Montigny, M., (2020), Non-inertial effects on a generalized DKP oscillator in a cosmic string space-time, General Relativity and Gravitation, 52, 1—20.
  • [14] Guvendi, A., Zare, S. and Hassanabadi, H., (2021), Vector boson oscillator in the spiral dislocation spacetime, European Physical Journal A, 57, 1--6.
  • [15] Guvendi, A. and Hassanabadi, H., (2021), Noninertial effects on a composite system, International Journal of Modern Physics A, 36, 2150253.
  • [16] Guvendi, A., (2021), Dynamics of a composite system in a point source-induced space-time, International Journal of modern Physics A, 36, 2150144.
  • [17] Figueiredo, M.E.R. and Bezerra de Mello, E.R., (2012), Relativistic quantum dynamics of a charged particle in cosmic string spacetime in the presence of magnetic field and scalar potential, European Physical Journal C, 72, 1--14.
  • [18] Ahmed, F., (2019), The generalized Klein-Gordon oscillator with Coulomb-type potential in (1+ 2)-dimensions Gürses space-time, General Relativity and Gravitation, 51, 1--16.
  • [19] Hosseini, M., Hassanabadi, H., Hassanabadi, S. and Sedaghatnia, P., (2019), Klein-Gordon oscillator in the presence of a Cornell potential in the cosmic string space-time, International Journal of Geometric Methods in Modern Physics, 16, 1950054.
  • [20] Vitoria, R.L.L. and Bakke, K., (2018), Rotating effects on the scalar field in the cosmic string spacetime, in the spacetime with space-like dislocation and in the spacetime with a spiral dislocation, European Physical Journal C, 78, 1--6.
  • [21] Vitoria, R.L.L., (2019), Noninertial effects on a scalar field in a spacetime with a magnetic screw dislocation, European Physical Journal C, 79, 1--7.
  • [22] Montigny, M., Hassanabadi, H., Pinfold, J. and Zare, S., (2021), Exact solutions of the generalized Klein--Gordon oscillator in a global monopole space-time, European Physical Journal Plus, 136, 1--14.
  • [23] Vilenkin, A., (1985), Cosmic strings and domain walls, Physics reports, 121, 263--315.
  • [24] Deser, S., Jackiv, R. and Hooft, G., (1984), Three-dimensional Einstein gravity: dynamics of flat space, Annals of Physics, 152, 220--235.
  • [25] Clement, G., (1990), Rotating string sources in three-dimensional gravity, Annals of Physics, 201, 241–257.
  • [26] Linet, B., (1986), Force on a charge in the space-time of a cosmic string, Physical Review D, 33, 1833.
  • [27] Bakke, K. and Furtado, C., (2010), Bound states for neutral particles in a rotating frame in the cosmic string spacetime, Physical Review D, 82, 084025.
  • [28] Bezerra, V.B., Lobo, I.P., Mota, H.F. and Muniz, C.R., (2019), Landau levels in the presence of a cosmic string in rainbow gravity, Annals of Physics, 401, 163--173.
  • [29] Guvendi, A. and Dogan, S.G., (2021), Relativistic dynamics of oppositely charged two fermions interacting with external uniform magnetic field, Few-Body Systems, 62, 1--8.
  • [30] Guvendi, A., (2021), Relativistic Landau levels for a fermion-antifermion pair interacting through Dirac oscillator interaction, European Physical Journal C, 81, 1--7.
  • [31] Cunha, M.M., Dias, H.S. and Silva, E.O., (2020), Dirac oscillator in a spinning cosmic string spacetime in external magnetic fields: Investigation of the energy spectrum and the connection with condensed matter physics, Physical Review D, 102, 105020.
  • [32] [32] Dogan, S.G., (2022), Landau Quantization for Relativistic Vector Bosons in a Gödel-Type Geometric Background, Few-Body Systems, 63, 1--10.
  • [33] Zare, S., Hassanabadi, H. and Guvendi, A., (2022), Relativistic Landau quantization for a composite system in the spiral dislocation spacetime, European Physical Journal Plus, 137, 1—8.
Year 2022, Issue: 050, 245 - 253, 30.09.2022

Abstract

References

  • [1] Birrell, N.D. and Davies, P.C.W., (1884), Quantum fields in curved space, Cambridge university press, Reprint edition, p 352.
  • [2] Brandenberger, R.H., (1985), Quantum field theory methods and inflationary universe models, Reviews of Modern Physics, 57, 1.
  • [3] DeWitt, B.S., (1975), Quantum field theory in curved spacetime, Physics Reports, 19, 295--357.
  • [4] DeWitt, B.S., (1957), Dynamical theory in curved spaces. I. A review of the classical and quantum action principles, Reviews of modern physics, 29, 377.
  • [5] Davies, P.C.W., (1976), Quantum field theory in curved space-time, Nature, 263, 377--380.
  • [6] Guvendi, A. and Sucu, Y., (2020), An interacting fermion-antifermion pair in the spacetime background generated by static cosmic string, Physics Letters B, 811, 135960.
  • [7] Anandan, J., (1981), Sagnac effect in relativistic and nonrelativistic physics, Physical Review D, 24, 338.
  • [8] Guvendi, A. and Hassanabadi, H., (2021), Relativistic Vector Bosons with Non-minimal Coupling in the Spinning Cosmic String Spacetime, Few-Body Systems, 62, 1—8.
  • [9] Dogan, S.G. and Sucu, Y., (2019), Quasinormal modes of Dirac field in 2+ 1 dimensional gravitational wave background, Physics Letters B, 797, 134839.
  • [10] Ahmed, F., (2019), Linear confinement of a scalar and spin-0 particle in a topologically trivial flat Gödel-type space-time, European Physical Journal C, 79, 1--13.
  • [11] Guvendi, A., (2021), Effects of Rotating Frame on a Vector Boson Oscillator, Sakarya University Journal of Science, 25, 847--853.
  • [12] Parker, L., (1980), One-electron atom in curved space-time, Physical Review Letters, 44, 1559.
  • [13] Zare, S., Hassanabadi, H. and Montigny, M., (2020), Non-inertial effects on a generalized DKP oscillator in a cosmic string space-time, General Relativity and Gravitation, 52, 1—20.
  • [14] Guvendi, A., Zare, S. and Hassanabadi, H., (2021), Vector boson oscillator in the spiral dislocation spacetime, European Physical Journal A, 57, 1--6.
  • [15] Guvendi, A. and Hassanabadi, H., (2021), Noninertial effects on a composite system, International Journal of Modern Physics A, 36, 2150253.
  • [16] Guvendi, A., (2021), Dynamics of a composite system in a point source-induced space-time, International Journal of modern Physics A, 36, 2150144.
  • [17] Figueiredo, M.E.R. and Bezerra de Mello, E.R., (2012), Relativistic quantum dynamics of a charged particle in cosmic string spacetime in the presence of magnetic field and scalar potential, European Physical Journal C, 72, 1--14.
  • [18] Ahmed, F., (2019), The generalized Klein-Gordon oscillator with Coulomb-type potential in (1+ 2)-dimensions Gürses space-time, General Relativity and Gravitation, 51, 1--16.
  • [19] Hosseini, M., Hassanabadi, H., Hassanabadi, S. and Sedaghatnia, P., (2019), Klein-Gordon oscillator in the presence of a Cornell potential in the cosmic string space-time, International Journal of Geometric Methods in Modern Physics, 16, 1950054.
  • [20] Vitoria, R.L.L. and Bakke, K., (2018), Rotating effects on the scalar field in the cosmic string spacetime, in the spacetime with space-like dislocation and in the spacetime with a spiral dislocation, European Physical Journal C, 78, 1--6.
  • [21] Vitoria, R.L.L., (2019), Noninertial effects on a scalar field in a spacetime with a magnetic screw dislocation, European Physical Journal C, 79, 1--7.
  • [22] Montigny, M., Hassanabadi, H., Pinfold, J. and Zare, S., (2021), Exact solutions of the generalized Klein--Gordon oscillator in a global monopole space-time, European Physical Journal Plus, 136, 1--14.
  • [23] Vilenkin, A., (1985), Cosmic strings and domain walls, Physics reports, 121, 263--315.
  • [24] Deser, S., Jackiv, R. and Hooft, G., (1984), Three-dimensional Einstein gravity: dynamics of flat space, Annals of Physics, 152, 220--235.
  • [25] Clement, G., (1990), Rotating string sources in three-dimensional gravity, Annals of Physics, 201, 241–257.
  • [26] Linet, B., (1986), Force on a charge in the space-time of a cosmic string, Physical Review D, 33, 1833.
  • [27] Bakke, K. and Furtado, C., (2010), Bound states for neutral particles in a rotating frame in the cosmic string spacetime, Physical Review D, 82, 084025.
  • [28] Bezerra, V.B., Lobo, I.P., Mota, H.F. and Muniz, C.R., (2019), Landau levels in the presence of a cosmic string in rainbow gravity, Annals of Physics, 401, 163--173.
  • [29] Guvendi, A. and Dogan, S.G., (2021), Relativistic dynamics of oppositely charged two fermions interacting with external uniform magnetic field, Few-Body Systems, 62, 1--8.
  • [30] Guvendi, A., (2021), Relativistic Landau levels for a fermion-antifermion pair interacting through Dirac oscillator interaction, European Physical Journal C, 81, 1--7.
  • [31] Cunha, M.M., Dias, H.S. and Silva, E.O., (2020), Dirac oscillator in a spinning cosmic string spacetime in external magnetic fields: Investigation of the energy spectrum and the connection with condensed matter physics, Physical Review D, 102, 105020.
  • [32] [32] Dogan, S.G., (2022), Landau Quantization for Relativistic Vector Bosons in a Gödel-Type Geometric Background, Few-Body Systems, 63, 1--10.
  • [33] Zare, S., Hassanabadi, H. and Guvendi, A., (2022), Relativistic Landau quantization for a composite system in the spiral dislocation spacetime, European Physical Journal Plus, 137, 1—8.
There are 33 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Abdullah Guvendi 0000-0003-0564-9899

Publication Date September 30, 2022
Submission Date May 23, 2022
Published in Issue Year 2022 Issue: 050

Cite

IEEE A. Guvendi, “INFLUENCE of SPINNING TOPOLOGICAL DEFECT on the LANDAU LEVELS ofRELATIVISTIC SPIN-0 PARTICLES”, JSR-A, no. 050, pp. 245–253, September 2022.