Research Article
BibTex RIS Cite

A deformation structure and origin of metamorphic sole rocks beneath the Eldivan and Ahlat ophiolites (Çankırı), Northern Anatolia.

Year 2025, Issue: 062, 90 - 110, 30.09.2025
https://doi.org/10.59313/jsr-a.1637292

Abstract

Eldivan and Ahlat ophiolitic rocks are located in the central part of the İzmir-Ankara-Erzincan Suture Belt at the northwest of Çankırı (Türkiye). They occurred at the base of the Tethys Ocean in the Jurassic-Cretaceous period and moved on the continent during the closure period of the ocean in the Late Cretaceous. Metamorphic sole rocks in ophiolites are formed by mostly amphibolites and partially quartzite and schist. This study aims to determine the origin, temperature and pressure of metamorphic sole rocks in Eldivan and Ahlat ophiolites.
According to energy-dispersive X-Ray spectroscopy (EDS) analysis of amphibolite samples from Eldivan and Ahlat ophiolites, amphibole minerals take place in edenite (Mg-hornblende)-pargasite range. In contrast, the plagioclase minerals have albite composition. EDS analysis and petrographical investigations show that all relict pyroxene minerals in rock are primary character. The formation temperature range of the rocks is calculated as 501 - 642 °C. As a result of geochemical analysis, the metamorphic sole rocks at Eldivan and Ahlat ophiolites derived from an OIB-like mantle.

Project Number

2008-FBE-D006

References

  • [1] R.A. Harris, 1998. Origin and tectonic evolution of the metamorphic sole beneath the Brooks Range ophiolite, Alaska. Geological Society of America Special Paper, 324, 293-312.
  • [2] Ö.F. Çelik, M. Delaloye, 2006. Characteristics of ophiolite-related metamorphic rocks in the Beyşehir ophiolitic melange (Central Taurides, Turkey), deduced from whole rock and mineral chemistry. Journal of Asian Earth Sciences, 26,461-476.
  • [3] O. Parlak, H. Yılmaz, Boztuğ, D., 2006. Origin and tectonic significance of metamorphic sole and isolated Dykes of the Divriği Ophiolite (Sivas, Turkey): Evidence for slab break-off prior to ophiolite emplacement. Turkish Journal of Earth Sciences, 15(1), 25-45.
  • [4] Ö.F. Çelik, 2007. Metamorphic sole rocks and their mafic dykes in the eastern Tauride belt ophiolites (southern Turkey): implications for OIB type magma generation following slab break–off. Geological Magazine, 144, 849–866.
  • [5] Ö. Elitok, K.Drüppel, 2008. Geochemistry and tectonic significance of metamorphic sole rocks beneath the Beyşehir–Hoyran ophiolite (SW-Turkey). Lithos, 322-353.
  • [6]E. Gartzos, V.J. Dietrich, G. Migiros, K. Serelis, Th. Lymperopoulou, 2009. The Origin of Amphibolites from Metamorphic Soles Beneath the Ultramafic Ophiolites in Evia and Lesvos (Greece) and Their Geotectonic Implication. Lithos, 108, 224-242.
  • [7] G. Torabi, N. Shirdashtzadeh, S. Arai, J. Koepke, 2011 Paleozoic and Mesozoic ophiolites of Central Iran: amphibolites from Jandaq, Posht-e-Badam, Nain and Ashin ophiolites. Neues Jahrbuch für Geologie und Paläontologie, 262, 2, 227-240.
  • [8]C. Guilmette, R. Hebert, J. Dostal, A. Indares, T. Ullrich, E. Bedard, C. Wang, 2012. Discovery of a dismembered metamorphic sole in the Saga ophiolitic melange, South Tibet: Assesing an Early Cretaceous disruption of the Neotethyan supra-subduction zone and consequences on basin closing. Gondwana Reserch, 22, 398-414.
  • [9] J. F. Parrot, 1980. The Baer-Bassit (Northwestern Syria) Ophiolitic Area. Ofioliti, Tethyan Ophiolite Special Issue, 9, 279-295.
  • [10] H. Whitechurch, T. Juteau, 1984. Role of Eastern Mediterranean Ophiolites (Turkey, Syria, Cyprus) in the history of the Neo-Tethys. Geological Society, London, Special Publications, 17, 301-317.
  • [11] K. Al-Riyami, A. Robertson, J. Dixon, C. Xenophontos, 2002. Origin and emplacement of the Late Cretaceous Baer-Bassit Ophiolite and its Metamorphic sole in NW Syria. Lithos, 65, 225-260.
  • [12] H. Whitechurch, 1977. Les roches métamorphiques infra-péridotitiques du Baër-Bassit (NW Syrien) témoins de l’écaillage intra-océanique tethysien éetude pétrologiue et structurale. Doktora Tezi (3. cycle), Nancy Üniversitesi, 194s.
  • [13] J.F. Parrot, H. Whitechurch, 1978. Subductions antèrieures au charriage Nord-Sud de la croûte téthysienne: facteur de metamorphisme de sèries sèdimantaires et volcaniques liees aux asseblages ophiolitiques syr-turcs, en schites verts et amphibolites. Rev. Gèogr. Phys. Gèol. Dynam., 2, 20, 153-170.
  • [14] Ü. Çakır, 1996. Toros-Umman Kuşağı Ofiyolit Tabanı Metamorfitlerinin Diğer Birimlerle Olan Jeokronolojik ve Yapısal İlişkileri. Turkish Journal of Earth Science, 5, 141-152.
  • [15] P. Önen, R. Hall, 2002. Sub-ophiolite metamorphic rocks from NW Anatolia, Turkey. J. Metamorphic Geol., 18, 483-495.
  • [16] J. Honnorez, C. Mével, R. Montigny, 1984. Geotectonic significance of gneissic amphibolites from the Vema fracture zone, equatorial mid-Atlantic ridge. Journal of Geophysical Research , 89 (B13), 11379–11400.
  • [17] G.A. Challis, 1965. High-temperature contact metamorphism at the Red Hills ultramafic-Wairau valley-New Zealand. Journal of Petrology, 6,395-419.
  • [18] J.J.Pamic, 1977. Variation in geothermometry and geobarometry of peridotite intrusions in the Dinaride Central Ophiolite Zone,Yugoslavia. Am. Mineral. 62, 874-886
  • [19] R. A. Jamieson, 1979. The formation of metamorphic aureoles beneath ophiolites- Evidence from the St. Anthony Complex, Newfoundland,Geology.
  • [20] M.P. Searle, J. Malpas, 1982. Petrochemistry and origin of sub-ophiolite metamorphic and related rocks in the Oman Mountains. Journal of the Geological Society, London 139, 235–48.
  • [21] E. Sarıfakıoğlu, Y. Dilek, M. Sevin, 2017. New synthesis of the Izmir-Ankara-Erzincan suture zone and the Ankara mélange in northern Anatolia based on new geochemical and geochronological constraints, in R. Sorkhabi (ed), Tectonic Evolution, Collision, and Seismicity of Southwest Asia. Geological Society of America Special Paper, 525, 1
  • [22] Ü. Çakır, T. Juteau, H. Whitechurch, 1978. Nouvelles preuves de l’ècaillage intra-ocèanique prècoce des ophiolites tèthysiennes: les roches mètamorphiques infra-pèridotitiques du massif de Pozantı-Karsantı (Turquie). Bull. Soc. Gèol. France, 7,20,1, 61-70.
  • [23] R. Thuizat, R. Montigny, Ü. Çakır, T. Juteau, 1978. K–Ar investigations on two Turkish Ophiolites. In: Zartman, R.E. (Ed.), Short Papers of the 4th International Conference Geochronology, Cosmochronology, Isotope Geology. Geological Surv. Am. Open-File Rep. 78-701, 430–432.
  • [24] O. Parlak, 2000. Geochemisrty and significance of mafic dyke swarm in Pozantı-Karsantı Ophiolite (Southern Turkey). Turkish Journal Earth Science, 9(1), 29-38.
  • [25] E.M., Moores, 1981. Ancient suture zones within continents. Science, 213, 41–46.
  • [26] A.I. Okay,O. Tüysüz, 1999. Tethyan sutures of northern Turkey. In B. Durand, L. Jolivet, F. Horváth, M. Séranne (Eds.), The Mediterranean basins: Tertiary extension within the Alpine orogeny. Geological Society of London, Special Publication, 156, 475–515.
  • [27] B. Akyürek, E. Bilginer, E. Çatal, Z. Dağer, Y. Soysal, O. Sunu, O. 1980. Eldivan–Şabanözü (Çankırı), Hasayaz–Çandır (Kalecik–Ankara) dolayının jeolojisi. MTA Rapor No: 6741 (yayınlanmamış).
  • [28] M.C. Göncüoglu, N. Turhan, K.Tekin, 2003. Evidence for the Triassic rifting and opening of the Neotethyan Izmir-Ankara Ocean, northern edge of the Tauride-Anatolide Platform, Turkey. In: Dekandia, FA, Cassinis, G. & Spina, A (Eds.) Late Paleozoic to Early Mesozoic events of Meditterranean Europe, and additional regional reports. Bull. Geol. Soc. Italy, Special, 2, 203-212.
  • [29] E. Sarıfakıoğlu, Y., Dilek, M., Sevin, 2014. Jurassic–Paleogene intraoceanic magmatic evolution of the Ankara Mélange, north–central Anatolia, Turkey. Solid Earth, 5, 77–108.
  • [30] M.A. Mueller, A. Licht, C. Campbell, F. Ocakoğlu, M.H., Taylor, L. Burch, T. Ugrai, M.Kaya, B. Kurtoğlu, P.M.C. Coster, G. Metais, K.C. Beard, 2019. Collision chronology along the İzmir‐Ankara‐Erzincan suture zone: Insights from the Sarıcakaya Basin, western Anatolia. Tectonics, 38, 3652-3674.
  • [31] T. Üner, 2010. Eldivan ve Ahlat ofiyolitlerinin petrolojisi. Hacettepe Üniv., Fen Bilimleri Enstitüsü, Doktora Tezi, 2010D5836, 185s.
  • [32] Ö.F. Çelik, A. Marzoli, R. Marschik, M. Chiaradia, F. Neubauer, İ. Öz, 2011. Early-Middle Jurassic intra oceanic subduction in the İzmir-Ankara-Erzincan Ocean, Northern Turkey. Tectonophsics, 509, 120-134.
  • [33] A. Dangerfield, 2008. Geochemistry, structure and tectonic evolution of the Eldivan Ophiolite, Ankara Melange, Central Turkey. Department of Geological Sciences, Brigham Young University, Master of Science, 51 p.
  • [34] B.E. Leake, 1968. A catalog of analyzed calciferous and subcalciferous amphiboles together with their nomenclature and associated minerals. Geol. Soc. Am., Spec. Pap. 98.
  • [35] B.E. Leake, A.R. Wooley, C.E.S. Arps, W.D. Birch, M.C. Gilbert, J.D. Grice, F.C. Hawthorne, A. Kato, H.J. Kısch, G.V. Krivovichev, K. Linthout, J. Laird, J.A. Mandarino, V.W. Maresch, E.H. Nickel, N.M.SW. Rock, J.C. Schumacher, D.C. Smith, N.C.N. Stephenson, L.U. Ugraretti, E.J.W. Whittaker, G. Youzhi, 1997. Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian Mineralogist, Vol. 35, 219-246.
  • [36] N.Morimoto, 1988. Nomenclature of pyroxenes. American Mineralogist, 73, 9-10, 1123-1133.
  • [37] J.M. Hammarstrom, E. Zen, 1986. Aluminum in hornblende: An emprical igneous geobarometer. American Mineralogist, 71, 1297-1313.
  • [38] L. S. Hollister, G.C. Grissom, E.K. Peters, H.H. Stowell, V.B. Sisson, 1987. Confirmation of the empirical correlation of Al in hornblend with pressure of solidification of calc-alkaline plutons. American Mineralogist, 72, 231-239.
  • [39] M.W. Schmidt, 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contribution Mineral Petrol., 110, 304-310.
  • [40] T. Holland, J. Blundy, 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole plagioclase thermometry. Contr. Mineral. and Petrol. 116, 433–447 https://doi.org/10.1007/BF00310910
  • [41] S.R. Hart, J.G. Schilling, J.R. Powell, 1973. Basalts from Iceland and along the Reykjanes Ridge: Sr isotope geochemistry. Nature, 246: 104-107.
  • [42] S.E. Humphris, G. Thompson, 1978. Trace element mobility during hydrothermal alteration of oceanic basalts. Geochimica et Cosmochimica Acta, 42, 127-136.
  • [43] J.A. Pearce, J.R. Cann, 1973. Tectonic setting of basaltic volcanic rocks determined using trace element analysis. Earth Planetary Science Letters, 19, 290–300.
  • [44] P.A. Floyd, J.A. Winchester, 1978. Identification and Discrimination of Altered and Metamorphosed Volcanic Rocks Using Immobile Elements. Chemical Geology, 21: 291-306.
  • [45] S.S. Sun, W.F. McDough, 1989. Chemical and isotopic systematics of ocean basalts: Implications for mantle composition and processes. In A.D. Saunders, and M.J. Norry, (Eds.), Magmatism in the ocean basins. Geological Society, London Special Publications, 42, 313-346.
  • [46] H. Williams, W.R. Smyth, 1973. Metamorphic auresoles beneath ophiolite suites and Alpine peridotites: tectonic implications with west Newfounland examples. American Journal of Science, 273, 594-621.
  • [47] J.A. Wınchester, P.A. Floyd, 1976. Geochemical magma type discrimination: Application to altered and metamorphosed basic igneous rocks. Earth Planet. Science Letter, 28, 459-469.
  • [48] J.A. Pearce, M.J. Norry, 1979. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69, 33-47.
  • [49] D.A. Wood, J. Joron, M. Treuil, 1979. A re-appraisal of the use of Trace Elements to classify and discriminate between magma series erupted in different tectonic settings. Earth and Planet Science Letters, 42, 2, 326-336.
  • [50] N. Nakamura, 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta, 38, 757-775.
  • [51] P.A. Polat, J.F. Casey, R. Kerrich, 1996. Geochemical characteristics of accereted material beneath the Pozantı-Karsantı ophiolite. Turkey: Intra-oceanic detechment, assembly and obduction. Tectonophysics, 263, 249-276.
  • [52] Ö. Vergili, O. Parlak, 2005. Geochemistry and tectonic setting of metamorphic sole rock and mafic dikes from the Pınarbaşı (Kayseri) Ophiolite, Central Anatolia. Ophioliti 30, 37-52.
There are 52 citations in total.

Details

Primary Language English
Subjects Geochemistry (Other), Igneous and Metamorphic Petrology
Journal Section Research Articles
Authors

Tijen Üner 0000-0001-6059-9148

Üner Çakir This is me 0009-0005-6581-734X

Project Number 2008-FBE-D006
Publication Date September 30, 2025
Submission Date February 10, 2025
Acceptance Date May 30, 2025
Published in Issue Year 2025 Issue: 062

Cite

IEEE T. Üner and Ü. Çakir, “A deformation structure and origin of metamorphic sole rocks beneath the Eldivan and Ahlat ophiolites (Çankırı), Northern Anatolia”., JSR-A, no. 062, pp. 90–110, September2025, doi: 10.59313/jsr-a.1637292.