Review
BibTex RIS Cite

A-to-I editing technologies: unlocking new avenues in cancer therapy

Year 2025, Issue: 062, 200 - 216, 30.09.2025
https://doi.org/10.59313/jsr-a.1642298

Abstract

This review examines the critical role of adenosine-to-inosine (A-to-I) RNA editing in oncology, focusing on its molecular mechanisms, clinical relevance, and therapeutic applications. The ADAR family of enzymes mediates A-to-I editing, influencing RNA stability, translation efficiency, and immune modulation. Dysregulated ADAR activity has shown a relationship with multiple cancers, including glioma, hepatocellular carcinoma, and breast cancer. This review is structured into three main sections. First, we provide an overview of the mechanisms of RNA editing and its regulatory functions in cancer biology. Next, we highlight its clinical relevance, particularly how altered RNA editing contributes to oncogenesis and immune evasion. Finally, we explore therapeutic strategies, including ADAR inhibitors, antisense oligonucleotides (ASOs), and inosine-mediated RNA modifications to restore gene expression balance. Restoring ADAR function involves correcting RNA editing imbalances, particularly tumor cells' disrupted equilibrium between ADAR1 and ADAR2. This modulation can counteract oncogenic RNA changes and enhance immunotherapy efficacy. We also elaborate on the clinical applications of RNA editing in precision medicine, highlighting its potential to revolutionize cancer therapy. Unlike permanent genomic modifications, RNA editing provides a reversible and dynamic approach, making it an attractive strategy for targeted cancer interventions. Integrating RNA editing strategies into oncology and biomedical research could pave the way for new therapeutic advances.

Ethical Statement

This review did not involve human or animal subjects and therefore did not require ethical approval.

Supporting Institution

Hasret TURKMEN was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under project number[123C441]

References

  • [1] P. A. Levene and W. A. Jacobs, “On the structure of thymus nucleic acid,” J. Biol. Chem., vol. 12, pp. 411–420, 1912.
  • [2] S. Delaunay, M. Helm, and M. Frye, “RNA modifications in physiology and disease: Towards clinical applications,” Nat. Rev. Genet., Feb. 2024, doi: 10.1038/s41576-023-00645-2.
  • [3] J. D. Watson and F. H. C. Crick, “A structure for deoxyribose nucleic acid.” Exploratorium Origins Project. [Online]. Available: https://annex.exploratorium.edu/origins/coldspring/printit.html (accessed Sep. 25, 2025).
  • [4] R. W. Holley et al., “Structure of a ribonucleic acid,” Science, vol. 147, no. 3664, pp. 1462–1465, Mar. 1965, doi: 10.1126/science.147.3664.1462.
  • [5] R. Desrosiers, K. Friderici, and F. Rottman, “Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells,” Proc. Natl. Acad. Sci. U.S.A., vol. 71, no. 10, pp. 3971–3975, Oct. 1974, doi: 10.1073/pnas.71.10.3971.
  • [6] K. D. Meyer and S. R. Jaffrey, “The dynamic epitranscriptome: N6-methyladenosine and gene expression control,” Nat. Rev. Mol. Cell Biol., vol. 15, no. 5, pp. 313–326, May 2014, doi: 10.1038/nrm3785.
  • [7] B. L. Bass and H. Weintraub, “An unwinding activity that covalently modifies its double-stranded RNA substrate,” Cell, vol. 55, no. 6, pp. 1089–1098, Dec. 1988, doi: 10.1016/0092-8674(88)90253-X.
  • [8] D. B. T. Cox et al., “RNA editing with CRISPR-Cas13,” Science, vol. 358, no. 6366, pp. 1019–1027, Nov. 2017, doi: 10.1126/science.aaq0180.
  • [9] I. A. Roundtree, M. E. Evans, T. Pan, and C. He, “Dynamic RNA modifications in gene expression regulation,” Cell, vol. 169, no. 7, pp. 1187–1200, Jun. 2017, doi: 10.1016/j.cell.2017.05.045.
  • [10] N. Jonkhout et al., “The RNA modification landscape in human disease,” RNA, vol. 23, no. 12, pp. 1754–1769, Dec. 2017, doi: 10.1261/rna.063503.117.
  • [11] Y. Li et al., “RNA-editing enzyme ADAR1 p150 isoform is critical for germinal center B cell response,” J. Immunol., vol. 209, no. 6, pp. 1071–1082, Sep. 2022, doi: 10.4049/jimmunol.2200149.
  • [12] P. Mukherjee, “Molecular significance of the ADAR3 R-domain in mediating ADAR3-RNA interactions in vivo,” Ph.D. dissertation, Indiana University, Bloomington, IN, USA, 2024.
  • [13] Y. Jiao et al., “The role of ADAR1 through and beyond its editing activity in cancer,” Cell Commun. Signal., Jan. 2024, doi: 10.1186/s12964-023-01465-x.
  • [14] C. Liu, J. Cao, H. Zhang, and J. Yin, “Evolutionary history of RNA modifications at N6-adenosine originating from the R-M system in eukaryotes and prokaryotes,” Biology (Basel), vol. 11, no. 2, Feb. 2022, doi: 10.3390/biology11020214.
  • [15] X.-L. Mao, G. Eriani, and X.-L. Zhou, “ADATs: Roles in tRNA editing and relevance to disease,” Acta Biochim. Biophys. Sin. (Shanghai), vol. 57, no. 1, pp. 73–83, Jul. 2024, doi: 10.3724/abbs.2024125.
  • [16] I. Barbieri and T. Kouzarides, “Role of RNA modifications in cancer,” Nat. Rev. Cancer, Jun. 2020, doi: 10.1038/s41568-020-0253-2.
  • [17] A. Karki, K. B. Campbell, S. Mozumder, A. J. Fisher, and P. A. Beal, “Impact of disease-associated mutations on the deaminase activity of ADAR1,” Biochemistry, vol. 63, no. 3, pp. 282–293, Feb. 2024, doi: 10.1021/acs.biochem.3c00405.
  • [18] E. Eisenberg and E. Y. Levanon, “A-to-I RNA editing—Immune protector and transcriptome diversifier,” Nat. Rev. Genet., Aug. 2018, doi: 10.1038/s41576-018-0006-1.
  • [19] B. Zinshteyn and K. Nishikura, “Adenosine-to-inosine RNA editing,” Wiley Interdiscip. Rev. Syst. Biol. Med., vol. 1, no. 2, pp. 202–209, Sep. 2009, doi: 10.1002/wsbm.10.
  • [20] M. M. Lamers, B. G. van den Hoogen, and B. L. Haagmans, “ADAR1: ‘Editor-in-Chief’ of cytoplasmic innate immunity,” Front. Immunol., vol. 10, p. 1763, 2019, doi: 10.3389/fimmu.2019.01763.
  • [21] S. H. Roth, E. Y. Levanon, and E. Eisenberg, “Genome-wide quantification of ADAR adenosine-to-inosine RNA editing activity,” Nat. Methods, vol. 16, no. 11, pp. 1131–1138, Nov. 2019, doi: 10.1038/s41592-019-0610-9.
  • [22] K. Fritzell, L. Di Xu, M. Otrocka, C. Andréasson, and M. Öhman, “Sensitive ADAR editing reporter in cancer cells enables high-throughput screening of small molecule libraries,” Nucleic Acids Res., vol. 47, no. 4, p. e22, Feb. 2019, doi: 10.1093/nar/gky1228.
  • [23] H. Grosjean et al., “Enzymatic conversion of adenosine to inosine and to N1-methylinosine in transfer RNAs: A review,” Biochimie, vol. 78, no. 6, pp. 488–501, 1996, doi: 10.1016/0300-9084(96)88148-5.
  • [24] Y. Kawahara, “Quantification of adenosine-to-inosine editing of microRNAs using a conventional method,” Nat. Protoc., vol. 7, no. 7, pp. 1426–1437, 2012, doi: 10.1038/nprot.2012.073.
  • [25] M. Sakurai, T. Yano, H. Kawabata, H. Ueda, and T. Suzuki, “Inosine cyanoethylation identifies A-to-I RNA editing sites in the human transcriptome,” Nat. Chem. Biol., vol. 6, no. 10, pp. 733–740, Oct. 2010, doi: 10.1038/nchembio.434.
  • [26] T. A. Nguyen et al., “Direct identification of A-to-I editing sites with nanopore native RNA sequencing,” Nat. Methods, vol. 19, no. 7, pp. 833–844, Jul. 2022, doi: 10.1038/s41592-022-01513-3.
  • [27] J.-J. Chen et al., “Single-Base Resolution Detection of Adenosine-to-Inosine RNA Editing by Endonuclease-Mediated Sequencing,” Anal. Chem., vol. 94, no. 24, pp. 8740–8747, Jun. 2022, doi: 10.1021/acs.analchem.2c01226.
  • [28] W.-B. Tao, N.-B. Xie, Q.-Y. Cheng, Y.-Q. Feng, and B.-F. Yuan, “Sensitive determination of inosine RNA modification in single cell by chemical derivatization coupled with mass spectrometry analysis,” Chin. Chem. Lett., vol. 34, no. 10, Art. no. 108243, Oct. 2023, doi: 10.1016/j.cclet.2023.108243.
  • [29] Y.-Y. Zheng, K. Reddy, S. Vangaveti, and J. Sheng, “Inosine-Induced Base Pairing Diversity during Reverse Transcription,” ACS Chem. Biol., vol. 19, no. 2, pp. 348–356, Feb. 2024, doi: 10.1021/acschembio.3c00555.
  • [30] Y. Yuxi, Dissertation “Inosine chemical labeling and molecular purification of edited RNA & DNA using maleimide (マレイミドによる塩基編集を持つ核酸におけるイノシンの化学標識と分⼦精製技術の開発),” 2024. [Online]. Available: institutional repository (URL not provided). [Accessed: Sep. 25, 2025].
  • [31] Y. Wang, Y. Zheng, and P. A. Beal, “Adenosine Deaminases That Act on RNA (ADARs),” in Enzymes, vol. 41, Academic Press, 2017, pp. 215–268, doi: 10.1016/bs.enz.2017.03.006.
  • [32] A. G. Torres, E. Batlle, and L. Ribas de Pouplana, “Role of tRNA modifications in human diseases,” Trends Mol. Med., vol. 20, no. 6, pp. 306–314, Jun. 2014, doi: 10.1016/j.molmed.2014.01.008.
  • [33] M. Pereira, S. Francisco, A. S. Varanda, M. Santos, M. A. S. Santos, and A. R. Soares, “Impact of tRNA modifications and tRNA-modifying enzymes on proteostasis and human disease,” Int. J. Mol. Sci., vol. 19, no. 12, p. 3738, Dec. 2018, doi: 10.3390/ijms19123738.
  • [34] Y.-Y. Zheng, Y. Wu, T. J. Begley, and J. Sheng, “Sulfur modification in natural RNA and therapeutic oligonucleotides,” RSC Chem. Biol., vol. 2, no. 8, pp. 990–1003, Aug. 2021, doi: 10.1039/D1CB00038A.
  • [35] R. Saran, Z. Huang, and J. Liu, “Phosphorothioate nucleic acids for probing metal binding, biosensing and nanotechnology,” Coord. Chem. Rev., vol. 428, p. 213624, Feb. 2021, doi: 10.1016/j.ccr.2020.213624.
  • [36] “Gene organization and evolutionary history,” Genome Biol. (web feature), 2012. [Online]. Available: http://genomebiology.com/2012/13/12/252. [Accessed: Sep. 25, 2025].
  • [37] I. Alseth, B. Dalhus, and M. Bjørås, “Inosine in DNA and RNA,” Curr. Opin. Genet. Dev., vol. 26, pp. 116–123, Jun. 2014, doi: 10.1016/j.gde.2014.07.008.
  • [38] X. Peng et al., “A-to-I RNA Editing Contributes to Proteomic Diversity in Cancer,” Cancer Cell, vol. 33, no. 5, pp. 817–828.e7, May 2018, doi: 10.1016/j.ccell.2018.03.026.
  • [39] R. Brusa et al., “Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice,” Science, vol. 270, no. 5242, pp. 1677–1680, Dec. 1995, doi: 10.1126/science.270.5242.1677.
  • [40] V. Tassinari et al., “ADAR1 is a new target of METTL3 and plays a pro-oncogenic role in glioblastoma by an editing-independent mechanism,” Genome Biol., vol. 22, no. 1, p. 51, Jan. 2021, doi: 10.1186/s13059-021-02271-9.
  • [41] A. Bavelloni et al., “AKT-dependent phosphorylation of the adenosine deaminases ADAR-1 and -2 inhibits deaminase activity,” FASEB J., vol. 33, no. 8, pp. 9044–9061, Aug. 2019, doi: 10.1096/fj.201800490RR.
  • [42] H. Song et al., “Biological roles of RNA m5C modification and its implications in cancer immunotherapy,” Biomark. Res., vol. 10, art. 15, Dec. 2022, doi: 10.1186/s40364-022-00362-8.
  • [43] J. Song, Y. Zhuang, and C. Yi, “Programmable RNA base editing via targeted modifications,” Nat. Chem. Biol., vol. 20, no. 3, pp. 277–290, Mar. 2024, doi: 10.1038/s41589-023-01531-y.
  • [44] T. Merkle et al., “Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides,” Nat. Biotechnol., vol. 37, no. 2, pp. 133–138, Feb. 2019, doi: 10.1038/s41587-019-0013-6.
  • [45] L. Qu et al., “Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs,” Nat. Biotechnol., vol. 37, no. 9, pp. 1059–1069, Sep. 2019, doi: 10.1038/s41587-019-0178-z.
  • [46] Z. Yi et al., “Engineered circular ADAR-recruiting RNAs increase the efficiency and fidelity of RNA editing in vitro and in vivo,” Nat. Biotechnol., vol. 40, no. 6, pp. 946–955, Jun. 2022, doi: 10.1038/s41587-021-01180-3.
  • [47] J. Song et al., “CRISPR-free, programmable RNA pseudouridylation to suppress premature termination codons,” Mol. Cell, vol. 83, no. 1, pp. 139–155.e9, Jan. 2023, doi: 10.1016/j.molcel.2022.11.011.
  • [48] M. R. O’Connell et al., “Programmable RNA recognition and cleavage by CRISPR/Cas9,” Nature, vol. 516, no. 7530, pp. 263–266, Dec. 2014, doi: 10.1038/nature13769.
  • [49] X. Yang et al., “CellREADR: An ADAR-based RNA sensor-actuator device,” in Methods in Enzymology: ADARs, vol. 710, pp. 207–227, 2025, doi: 10.1016/bs.mie.2024.11.027.
  • [50] K. Saliminejad, H. R. Khorram Khorshid, S. Soleymani Fard, and S. H. Ghaffari, “An overview of microRNAs: Biology, functions, therapeutics, and analysis methods,” J. Cell. Physiol., vol. 234, no. 5, pp. 5451–5465, May 2019, doi: 10.1002/jcp.27486.
  • [51] T. Chen et al., “ADAR1 is required for differentiation and neural induction by regulating microRNA processing in a catalytically independent manner,” Cell Res., vol. 25, no. 4, pp. 459–476, Apr. 2015, doi: 10.1038/cr.2015.24.
  • [52] R. Cattaneo, A. Schmid, D. Eschle, K. Baczko, V. ter Meulen, and M. A. Billeter, “Biased hypermutation and other genetic changes in defective measles viruses in human brain infections,” Cell, vol. 55, no. 2, pp. 255–265, Oct. 1988, doi: 10.1016/0092-8674(88)90048-7.
  • [53] M. A. Billeter and R. Cattaneo, “Molecular biology of defective measles viruses persisting in the human central nervous system,” in The Paramyxoviruses, D. W. Kingsbury, Ed. New York, NY, USA: Plenum Press, 1991, pp. 323–345.
  • [54] R. C. Zahn, I. Schelp, O. Utermöhlen, and D. von Laer, “A-to-G hypermutation in the genome of lymphocytic choriomeningitis virus,” J. Virol., vol. 81, no. 2, pp. 457–464, Jan. 2007, doi: 10.1128/JVI.00067-06.
  • [55] S. Werner and B. M. Wöhrl, “Homodimeric reverse transcriptases from Rous sarcoma virus mutated within the polymerase or RNase H active site of one subunit are active,” Eur. J. Biochem., vol. 267, no. 15, pp. 4740–4744, Aug. 2000, doi: 10.1046/j.1432-1327.2000.01530.x.
  • [56] J. D. Roberts, K. Bebenek, and T. A. Kunkel, “The accuracy of reverse transcriptase from HIV-1,” Science, vol. 242, no. 4882, pp. 1171–1173, Nov. 1988, doi: 10.1126/science.2460925.
  • [57] Y. Teng, M. Zhu, Y. Chi, L. Li, and Y. Jin, “Can G-quadruplex become a promising target in HBV therapy?,” Front. Immunol., vol. 13, art. 1091873, Dec. 2022, doi: 10.3389/fimmu.2022.1091873.
  • [58] C. Saintomé, S. Amrane, J.-L. Mergny, and P. Alberti, “The exception that confirms the rule: A higher-order telomeric G-quadruplex structure more stable in sodium than in potassium,” Nucleic Acids Res., vol. 44, no. 6, pp. 2926–2935, Apr. 2016, doi: 10.1093/nar/gkw003.
  • [59] M. Frye, B. T. Harada, M. Behm, and C. He, “RNA modifications modulate gene expression during development,” Science, vol. 361, no. 6409, pp. 1346–1349, Sep. 2018, doi: 10.1126/science.aau1646.
  • [60] D. F. De Jesus et al., “Redox regulation of m6A methyltransferase METTL3 in β-cells controls the innate immune response in type 1 diabetes,” Nat. Cell Biol., vol. 26, no. 3, pp. 421–437, Mar. 2024, doi: 10.1038/s41556-024-01368-0.
  • [61] J. Rehwinkel and P. Mehdipour, “ADAR1: From basic mechanisms to inhibitors,” Trends Cell Biol., vol. 35, no. 1, pp. 59–73, Jan. 2025, doi: 10.1016/j.tcb.2024.06.006. (Epub Jul. 18, 2024.).
  • [62] H. Chung et al., “Human ADAR1 prevents endogenous RNA from triggering translational shutdown,” Cell, vol. 172, no. 4, pp. 811–824.e14, Feb. 2018, doi: 10.1016/j.cell.2017.12.038.
  • [63] A. Kobayashi, Y. Kitagawa, A. Nasser, H. Wakimoto, K. Yamada, and S. Tanaka, “Emerging roles and mechanisms of RNA modifications in neurodegenerative diseases and glioma,” Cells, vol. 13, no. 5, p. 457, Mar. 2024, doi: 10.3390/cells13050457.
  • [64] O. Solomon et al., “RNA editing by ADAR1 leads to context-dependent transcriptome-wide changes in RNA secondary structure,” Nat. Commun., vol. 8, no. 1, p. 1440, Dec. 2017, doi: 10.1038/s41467-017-01458-8.
  • [65] F. J. Gassner et al., “RNA editing contributes to epitranscriptome diversity in chronic lymphocytic leukemia,” Leukemia, vol. 35, no. 4, pp. 1053–1063, Apr. 2021, doi: 10.1038/s41375-020-0995-6.
  • [66] P. Mehdipour et al., “Epigenetic therapy induces transcription of inverted SINEs and ADAR1 dependency,” Nature, vol. 588, no. 7836, pp. 169–173, Dec. 2020, doi: 10.1038/s41586-020-2844-1.
  • [67] N. Y. Spencer and R. C. Stanton, “The Warburg effect, lactate, and nearly a century of trying to cure cancer,” Semin. Nephrol., vol. 39, no. 4, pp. 380–393, Jul. 2019, doi: 10.1016/j.semnephrol.2019.04.007.
  • [68] M. Certo, C.-H. Tsai, V. Pucino, P. C. Ho, and C. Mauro, “Lactate modulation of immune responses in inflammatory versus tumour microenvironments,” Nat. Rev. Immunol., vol. 21, no. 3, pp. 151–161, Mar. 2021, doi: 10.1038/s41577-020-0406-2.
  • [69] M. Nakano, T. Fukami, S. Gotoh, and M. Nakajima, “A-to-I RNA editing up-regulates human dihydrofolate reductase in breast cancer,” J. Biol. Chem., vol. 292, no. 12, pp. 4873–4884, Mar. 2017, doi: 10.1074/jbc.M117.775684.
  • [70] A. Hariharan et al., “Heterogeneous RNA editing and influence of ADAR2 on mesothelioma chemoresistance and the tumor microenvironment,” Mol. Oncol., vol. 16, no. 22, pp. 3949–3974, Dec. 2022, doi: 10.1002/1878-0261.13322.
  • [71] T. L. Wong et al., “ADAR1-mediated RNA editing of SCD1 drives drug resistance and self-renewal in gastric cancer,” Nat. Commun., vol. 14, no. 1, p. 7990, Dec. 2023, doi: 10.1038/s41467-023-38581-8.
  • [72] H. Cheng, J. Yu, and C. C. Wong, “Adenosine-to-inosine RNA editing in cancer: Molecular mechanisms and downstream targets,” Protein Cell, vol. 16, no. 6, pp. 391–417, Jun. 2025, doi: 10.1093/procel/pwae039.
  • [73] J. Richter, D. Madduri, S. Richard, and A. Chari, “Selinexor in relapsed/refractory multiple myeloma,” Ther. Adv. Hematol., vol. 11, p. 204062072093062, Jan. 2020, doi: 10.1177/2040620720930629.
  • [74] Y. A. Bernal, E. Durán, I. Solar, E. A. Sagredo, and R. Armisén, “ADAR-mediated A>I(G) RNA editing in the genotoxic drug response of breast cancer,” Int. J. Mol. Sci., vol. 25, no. 13, p. 7424, Jul. 2024, doi: 10.3390/ijms25137424.
  • [75] Q. T. Ostrom, G. Cioffi, K. Waite, C. Kruchko, and J. S. Barnholtz-Sloan, “CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018,” Neuro-Oncol., vol. 23, suppl. 3, pp. iii1–iii105, Oct. 2021, doi: 10.1093/neuonc/noab200.
  • [76] Z. Li et al., “Aberrant alternative splicing pattern of ADAR2 downregulates adenosine-to-inosine editing in glioma,” Oncol. Rep., vol. 33, no. 6, pp. 2845–2852, Jun. 2015, doi: 10.3892/or.2015.3907.
  • [77] V. Cesarini et al., “ADAR2/miR-589-3p axis controls glioblastoma cell migration/invasion,” Nucleic Acids Res., vol. 46, no. 4, pp. 2045–2059, Feb. 2018, doi: 10.1093/nar/gkx1257.
  • [78] V. Patil, J. Pal, K. Mahalingam, and K. Somasundaram, “Global RNA editome landscape discovers reduced RNA editing in glioma: Loss of editing of gamma-amino butyric acid receptor alpha subunit 3 (GABRA3) favors glioma migration and invasion,” PeerJ, vol. 8, e9755, Sep. 2020, doi: 10.7717/peerj.9755.
  • [79] Y. Zhang et al., “ADAR3 expression is an independent prognostic factor in lower-grade diffuse gliomas and positively correlated with the editing level of GRIA2Q607R,” Cancer Cell Int., vol. 18, no. 1, p. 254, Dec. 2018, doi: 10.1186/s12935-018-0695-8.
  • [80] A. Ghalali et al., “AZIN1 RNA editing alters protein interactions, leading to nuclear translocation and worse outcomes in prostate cancer,” Exp. Mol. Med., vol. 54, no. 10, pp. 1713–1726, Oct. 2022, doi: 10.1038/s12276-022-00845-6.
  • [81] X. Hu et al., “RNA over-editing of BLCAP contributes to hepatocarcinogenesis identified by whole-genome and transcriptome sequencing,” Cancer Lett., vol. 357, no. 2, pp. 510–519, Feb. 2015, doi: 10.1016/j.canlet.2014.12.006.
  • [82] W. Chen et al., “A-to-I RNA editing of BLCAP lost the inhibition to STAT3 activation in cervical cancer,” Oncotarget, vol. 8, no. 26, pp. 43201–43212, 2017, doi: 10.18632/oncotarget.17034. [Online]. Available: www.impactjournals.com/oncotarget.
  • [83] K. Gumireddy et al., “The mRNA-edited form of GABRA3 suppresses GABRA3-mediated Akt activation and breast cancer metastasis,” Nat. Commun., vol. 7, p. 10715, Feb. 2016, doi: 10.1038/ncomms10715.
  • [84] J. Liu, F. Wang, Y. Zhang, J. Liu, and B. Zhao, “ADAR1-mediated RNA editing and its role in cancer,” Front. Cell Dev. Biol., vol. 10, p. 956649, Jul. 2022, doi: 10.3389/fcell.2022.956649.
  • [85] B. Z. Tan, H. Huang, R. Lam, and T. W. Soong, “Dynamic regulation of RNA editing of ion channels and receptors in the mammalian nervous system,” Mol. Brain, vol. 2, p. 13, 2009, doi: 10.1186/1756-6606-2-13.
  • [86] B. J. Booth et al., “RNA editing: Expanding the potential of RNA therapeutics,” Mol. Ther., vol. 31, no. 6, pp. 1536–1557, Jun. 2023, doi: 10.1016/j.ymthe.2023.01.005.
  • [87] D. Katrekar et al., “Efficient in vitro and in vivo RNA editing via recruitment of endogenous ADARs using circular guide RNAs,” Nat. Biotechnol., vol. 40, no. 6, pp. 938–945, Jun. 2022, doi: 10.1038/s41587-021-01171-4.
  • [88] K. H. Tamizkar and M. F. Jantsch, “RNA editing in disease: Mechanisms and therapeutic potential,” RNA, vol. 31, no. 3, pp. 359–368, Feb. 2025, doi: 10.1261/rna.080331.124.
  • [89] J. R. Sinnamon et al., “Targeted RNA editing in brainstem alleviates respiratory dysfunction in a mouse model of Rett syndrome,” Proc. Natl. Acad. Sci. U. S. A., vol. 119, no. 33, e2206053119, Aug. 2022, doi: 10.1073/pnas.2206053119.
  • [90] D. Katrekar et al., “In vivo RNA editing of point mutations via RNA-guided adenosine deaminases,” Nat. Methods, vol. 16, no. 3, pp. 239–242, Mar. 2019, doi: 10.1038/s41592-019-0323-0.
  • [91] H. A. Tanash and E. Piitulainen, “Liver disease in adults with severe alpha-1-antitrypsin deficiency,” J. Gastroenterol., vol. 54, no. 6, pp. 541–548, Jun. 2019, doi: 10.1007/s00535-019-01548-y.
  • [92] X. Zhang and W. Song, “The role of APP and BACE1 trafficking in APP processing and amyloid-β generation,” Alzheimers Res. Ther., vol. 5, no. 5, p. 46, 2013. [Online]. Available: http://alzres.com/content/5/5/46
  • [93] Y. Y. Syed, “Selinexor: First global approval,” Drugs, vol. 79, no. 13, pp. 1485–1494, Sep. 2019, doi: 10.1007/s40265-019-01188-9.
  • [94] S. Wang et al., “COPA A-to-I RNA editing hijacks endoplasmic reticulum stress to promote metastasis in colorectal cancer,” Cancer Lett., vol. 553, 216995, Jan. 2023, doi: 10.1016/j.canlet.2022.216995.
  • [95] P. Shen et al., “CircNEIL3 regulatory loop promotes pancreatic ductal adenocarcinoma progression via miRNA sponging and A-to-I RNA-editing,” Mol. Cancer, vol. 20, no. 1, p. 51, Dec. 2021, doi: 10.1186/s12943-021-01333-7.
There are 95 citations in total.

Details

Primary Language English
Subjects Genomics and Transcriptomics, Medical Biochemistry - Nucleic Acids, Gene and Molecular Therapy
Journal Section Review
Authors

Hasret Turkmen 0000-0001-8419-7207

Nefise Demir 0000-0001-6311-4337

Mustafa Şen 0000-0002-2421-9184

Mustafa Can 0000-0002-1749-8293

Publication Date September 30, 2025
Submission Date February 18, 2025
Acceptance Date March 24, 2025
Published in Issue Year 2025 Issue: 062

Cite

IEEE H. Turkmen, N. Demir, M. Şen, and M. Can, “A-to-I editing technologies: unlocking new avenues in cancer therapy”, JSR-A, no. 062, pp. 200–216, September2025, doi: 10.59313/jsr-a.1642298.