BAZI BİTKİ ÇEŞİTLERİNİN TİROZİNAZ AKTİVİTESİNE ETKİLERİ VE ANTİOKSİDAN ÖZELLİKLERİNİN İNCELENMESİ
Yıl 2023,
Sayı: 008, 35 - 42, 31.12.2023
Duygu Yaman
,
Hatice Serin
,
Merve Çalış
,
Gülnur Arabacı
Öz
Hücrelerde hasar oluşturan serbest radikaller ve reaktif oksijen türevleri, antioksidanlar tarafından etkili şekilde indirgenerek daha az toksisitesi olan ürünlere dönüştürülür. Canlı sağlığının devamlılığı açısından antioksidanların sürekli olarak vücuda alınması gerekmektedir. Tirozinaz enzimi, deriye renk veren pigment olan melaninin sentezinde tirozinin oksidasyonunu katalizleyen bir oksidazdır. Enzimin çok ya da az sentezlenmesi canlılarda çeşitli cilt sorunlarına ve bazı nörodejeneratif hasarlara yol açabilmektedir. Bu çalışmada günlük hayatımızda yemeklerde ve bitki çayı olarak tükettiğimiz iki önemli bitkiden biberiye ve yeşil çayın tirozinaz enzimi inhibisyon etkilerini, içeriğindeki toplam fenolik madde miktarı ve DPPH serbest radikal giderimi aktivitesinin belirlenerek antioksidan kapasitesinin tespit edilmesi amaçlanmıştır. Doğal ekstraksiyon yöntemi tercih edilmiştir. Bu yönteme göre biberiye and yeşil çay bitkileri kurutularak demleme metoduyla saf su ile ekstrakte edilmiştir. Tirozinaz enzimini, biberiye bitkisi 750 μg/ml konsantrasyonda %75, yeşil çay bitkisi ise 1000 μg/ml konsantrasyonda % 77 oranında inhibe etmiştir. Toplam fenolik içerikleri Folin-Ciocalteu yöntemiyle belirlenmiştir. En yüksek fenolik içeriğe sahip olan yeşil çay (186 mg/GAE) bulunmuştur. Antioksidan kapasiteleri DPPH(1,1-difenil-2-pikril-hidrazil) metoduyla serbest radikal giderim etkileri belirlenmiştir. DPPH metodunda pozitif kontrol olarak Trolox ve BHT kullanıldı. En yüksek DPPH serbest radikal giderim aktivitesini yeşilçay ve biberiye 1000 μg/ml konsantrasyonda göstermiştir.
Kaynakça
- Ulusu F., Tümer K. and Ulusu Y., (2022), Antioxidant Responses To Drought Stress In Pennyroyal (Mentha pulegium L.). Journal of Scientific Reports-A., (051): 26-48.
- Nacak, F.M., (2014), Determination of Antioxidant capacity by Electrochemical Methods and Comparison With Classical Methods, Adnan Menderes University, Institute ofv Science and Technology
- Bahadori, M.B., Kirkan, B., Sarikurkcu, C. and Ceylan, O., (2019), Metabolite profiling and health benefits of Stachys cretica subsp. myrtinaea as a medicinal food, Industrial Crops and Products, 131, 85-89.
- Bahadori, M.B., Maggi, F., Zengin, G., Asghari, B. ve Eskandani, M., (2020), Essential oils of hedgenettles (Stachys inflata, S. lavandulifolia, and S. byzantina) have antioxidant, anti -Alzheimer, antidiabetic, and anti-obesity potential: A comparative study, Industrial Crops and Products, 145, 112089.
- Bonesi, M., Xiao, J., Tundis, R., Aiello, F., Sicari, V., and Loizzo, M., (2019), Advances in the tyrosinase inhibitors from plant source, Current medicinal chemistry, 26 (18), 3279-3299.
- Polatoğlu İ., (2016), Tirozinaz Enzim Aktivitesi Üzerine Reaksiyon Parametre Etkilerinin UV Spektrofotometre Ile Yerinde Analiz Edilmesi. CBUJOS., 12(2): 0-.
- Kalka, K., Mukhtar, H., Turowski-Wanke A., Merk H., (2000), Biomelanin antioxidants in cosmetics: assessment based on inhibition of lipid peroxidation, Skin Pharmacology and Applied Skin Physiology, 13, 143-149.
- Gholamhoseinian, A. and Razmi, Z., (2012), Screening the methanolic extracts of some plants for tyrosinase inhibitory activity, Toxicological & Environmental Chemistry, 94 (2), 310-318.
- ÖZER, Ö., (2006), Kozmetik renk açıcı maddeler ve değerlendirilme yöntemleri Türkiye Klinikleri, Turkish Journal of Medical Sciences, 2, 24-29.
- Al-Sereiti M.R., Abu-Amer KM, Sen P., (1999), Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials. Indian J Exp Biol, 37(2):124-30.
- Tai, J., Cheung, S., Wu, M., Hasman, D., (2012), Antiproliferation effect of Rosemary (Rosmarinus officinalis) on human ovarian cancer cell in vitro. Phytomedicine, 19:436-443.
- Yang, C.S. and Landau, J.M., (2000), Effects of Tea Comsumption on Nutrition and Health. American Society for Nutr. Sci., 130: 2409-2412
- Yapar, E.A., (2017), Overview of Skin Whiteners, Marmara Pharmaceutical Journal, 21, 1, 48-53.
- Kım Y J, Uyama H., (2005), Tyrosinase İnhibitors from Natural and Synthetic Sources: Structure, İnhibition Mechanism and Perspective for the Future, Cellular and Molecular Life Sciences, 62, 1707-1723.
- Yang, Z., Wang, Y., Wang, Y., and Zhang, Y., (2012), Bioassay-guided screening and isolation of α-glucosidase and tyrosinase inhibitors from leaves of Morus alba, Food chemistry, 131 (2 ), 617-625.
- Clarke, G., Ting, KN, Wiart, C., and Fry, J., (2013), High correlation of 2, 2-diphenyl-1- picrylhydrazyl (DPPH) radical scavenging, ferric reducing activity potential and total phenolics content indicates redundancy in use of all three assays to screen for antioxidant activity of extracts of plants from the Malaysian rainforest, Antioxidants, 2 (1), 1-10.
- Blois M.S., (1958), Antioxidant determinations by the use of a stable free radical, Nature, 181: 1199–1200.
- Pawelek J. M. and Körner A. M., (1982), The biosynthesis of mammalian melanin. AMSCA 70: 136–145.
- Mayer A. M., (1987), Polyphenol oxidases in plants: recent progress. Phytochemistry 26: 11–20.
INVESTIGATION OF THE EFFECTS OF SOME PLANT VARIETIES ON TYROSINASE ACTIVITY AND ANTIOXIDANT PROPERTIES
Yıl 2023,
Sayı: 008, 35 - 42, 31.12.2023
Duygu Yaman
,
Hatice Serin
,
Merve Çalış
,
Gülnur Arabacı
Öz
Free radicals and reactive oxygen derivatives that cause damage to cells are effectively reduced by antioxidants and converted into products with less toxicity. Antioxidants must be taken into the body continuously to maintain living health. The enzyme tyrosinase is an oxidase that catalyzes the oxidation of tyrosine in the synthesis of melanin, the pigment that gives color to the skin. Over or under-expression of the enzyme can cause various skin problems and neurodegenerative damage in living things. This study aimed to determine the antioxidant capacity of rosemary and green tea, two important plants that we consume in our daily life in meals and as herbal tea, by determining the tyrosinase enzyme inhibition effects, total phenolic substance content, and DPPH free radical scavenging activity. The natural extraction method is preferred. According to this method, green tea and rosemary plants were dried and extracted with pure water by brewing method. The rosemary plant inhibited the tyrosinase enzyme at 750 μg/ml concentrations by 75% and the green tea plant at 1000 μg/ml concentration by 77%. Total phenolic contents were determined by the Folin-Ciocalteu method. Green tea (186 mg/GAE) was found to have the highest phenolic content. Antioxidant capacities were determined by the DPPH(1,1-diphenyl-2-picryl-hydrazil) method, and their free radical scavenging effects were determined. Trolox and BHT were used as positive controls in the DPPH method. Green tea and rosemary showed the highest DPPH free radical scavenging activity at 1000 μg/ml concentration
Kaynakça
- Ulusu F., Tümer K. and Ulusu Y., (2022), Antioxidant Responses To Drought Stress In Pennyroyal (Mentha pulegium L.). Journal of Scientific Reports-A., (051): 26-48.
- Nacak, F.M., (2014), Determination of Antioxidant capacity by Electrochemical Methods and Comparison With Classical Methods, Adnan Menderes University, Institute ofv Science and Technology
- Bahadori, M.B., Kirkan, B., Sarikurkcu, C. and Ceylan, O., (2019), Metabolite profiling and health benefits of Stachys cretica subsp. myrtinaea as a medicinal food, Industrial Crops and Products, 131, 85-89.
- Bahadori, M.B., Maggi, F., Zengin, G., Asghari, B. ve Eskandani, M., (2020), Essential oils of hedgenettles (Stachys inflata, S. lavandulifolia, and S. byzantina) have antioxidant, anti -Alzheimer, antidiabetic, and anti-obesity potential: A comparative study, Industrial Crops and Products, 145, 112089.
- Bonesi, M., Xiao, J., Tundis, R., Aiello, F., Sicari, V., and Loizzo, M., (2019), Advances in the tyrosinase inhibitors from plant source, Current medicinal chemistry, 26 (18), 3279-3299.
- Polatoğlu İ., (2016), Tirozinaz Enzim Aktivitesi Üzerine Reaksiyon Parametre Etkilerinin UV Spektrofotometre Ile Yerinde Analiz Edilmesi. CBUJOS., 12(2): 0-.
- Kalka, K., Mukhtar, H., Turowski-Wanke A., Merk H., (2000), Biomelanin antioxidants in cosmetics: assessment based on inhibition of lipid peroxidation, Skin Pharmacology and Applied Skin Physiology, 13, 143-149.
- Gholamhoseinian, A. and Razmi, Z., (2012), Screening the methanolic extracts of some plants for tyrosinase inhibitory activity, Toxicological & Environmental Chemistry, 94 (2), 310-318.
- ÖZER, Ö., (2006), Kozmetik renk açıcı maddeler ve değerlendirilme yöntemleri Türkiye Klinikleri, Turkish Journal of Medical Sciences, 2, 24-29.
- Al-Sereiti M.R., Abu-Amer KM, Sen P., (1999), Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials. Indian J Exp Biol, 37(2):124-30.
- Tai, J., Cheung, S., Wu, M., Hasman, D., (2012), Antiproliferation effect of Rosemary (Rosmarinus officinalis) on human ovarian cancer cell in vitro. Phytomedicine, 19:436-443.
- Yang, C.S. and Landau, J.M., (2000), Effects of Tea Comsumption on Nutrition and Health. American Society for Nutr. Sci., 130: 2409-2412
- Yapar, E.A., (2017), Overview of Skin Whiteners, Marmara Pharmaceutical Journal, 21, 1, 48-53.
- Kım Y J, Uyama H., (2005), Tyrosinase İnhibitors from Natural and Synthetic Sources: Structure, İnhibition Mechanism and Perspective for the Future, Cellular and Molecular Life Sciences, 62, 1707-1723.
- Yang, Z., Wang, Y., Wang, Y., and Zhang, Y., (2012), Bioassay-guided screening and isolation of α-glucosidase and tyrosinase inhibitors from leaves of Morus alba, Food chemistry, 131 (2 ), 617-625.
- Clarke, G., Ting, KN, Wiart, C., and Fry, J., (2013), High correlation of 2, 2-diphenyl-1- picrylhydrazyl (DPPH) radical scavenging, ferric reducing activity potential and total phenolics content indicates redundancy in use of all three assays to screen for antioxidant activity of extracts of plants from the Malaysian rainforest, Antioxidants, 2 (1), 1-10.
- Blois M.S., (1958), Antioxidant determinations by the use of a stable free radical, Nature, 181: 1199–1200.
- Pawelek J. M. and Körner A. M., (1982), The biosynthesis of mammalian melanin. AMSCA 70: 136–145.
- Mayer A. M., (1987), Polyphenol oxidases in plants: recent progress. Phytochemistry 26: 11–20.