Derleme
BibTex RIS Kaynak Göster

Green synthesis of nanoparticles the importance of use in food packaging: an overview

Yıl 2024, Sayı: 010, 13 - 25, 31.08.2024

Öz

Studies focusing on food quality and shelf life continue on the packaging of food products. Food industry professionals often find it challenging to preserve food that is tasty, practical, shelf-stable, and of excellent quality. Active antibacterial packaging technologies that can handle these difficulties have been developed through research and the development of antimicrobial materials for food applications. New development technological solutions such as biodegradable materials, antimicrobial packaging edible films, smart packaging, nanocomposite packaging, and nanosensors can be used to improve food safety and shelf life. An important research area that offers new perspectives and solutions for the food industry is nanotechnological applications. Although there are many physical and chemical ways of making nanomaterials, green synthesis is also the most acceptable method as environmentally friendly materials are used. The use of green synthetic nanoparticles (NPS) in food packaging has been extensively researched. It is estimated that green synthetic NPs used in packaging will minimize the damage to the environment while simultaneously affecting and increasing its performance. In addition, the synthesis of nanoparticles has gained great importance with the use of plant extracts, non-toxicity, and non-hazardous to the environment. In an effort to lessen the detrimental effects of technological practices on environmental and human health, society is concentrating on a greener future. Another innovative synthesis used to achieve safe and active packaging is called "green synthesis," and it is mentioned here. Using such environmentally friendly active packaging can minimize product losses, enhance food safety and quality, lower the risk of foodborne pathogen outbreaks, and reduce waste all while preserving sustainability. Food packaging that is both antimicrobial and ecologically friendly has the potential to greatly benefit from the new and developing field of nanotechnology. In this article, the importance of using nanomaterials in food packaging with the green synthesis method, the role of Au, Ag, ZnO, Cu, and TiO2 metal nanoparticles on packaging due to their biological and antibacterial properties, and their therapeutic application areas are discussed.

Etik Beyan

None

Destekleyen Kurum

None

Teşekkür

None

Kaynakça

  • [1] B. Kılınç, Ş. Çaklı, “Paketleme Tekniklerinin Balık Ve Kabuklu Su Ürünleri Mikrobiyal Florası Üzerine Etkileri.,” Su Ürünleri Dergisi, vol. 18, no. 1, pp. 279–291, Mar. 2001. [Online]. Available: http://www.egejfas.org/tr/download/article-file/58112
  • [2] M. Vanderroost, P. Ragaert, F. Devlieghere, and B. De Meulenaer, “Intelligent Food Packaging: The Next Generation,” Trends Food Sci. Technol., vol. 39, no. 1, pp. 47–62, Sep. 2014, doi:10.1016/j.tifs.2014.06.009.
  • [3] D. S. Cha and M. S. Chinnan, “Biopolymer-Based Antimicrobial Packaging: A Review,” Crit. Rev. Food Sci. Nutr., vol. 44, no. 4, pp. 223–237, 2004, doi: 10.1080/10408690490464276.
  • [4] S. A. O. Adeyeye, “Food Packaging and Nanotechnology: Safeguarding Consumer Health and Safety,” Nutr. Food Sci., vol. 49, no. 6, pp. 1164–1179, Dec. 2019, doi: 10.1108/nfs-01-2019-0020.
  • [5] M. Hosseinnejad and S. M. Jafari, “Evaluation of Different Factors Affecting Antimicrobial Properties of Chitosan,” Int. J. Biol. Macromol., vol. 85, pp. 467–475, Apr. 2016, doi: 10.1016/j.ijbiomac.2016.01.022.
  • [6] S. Jafarzadeh, A. K. Alias, F. Ariffin, and S. Mahmud, “Characterization of Semolina Protein Film with Incorporated Zinc Oxide Nano Rod Intended for Food Packaging,” Pol. J. Food Nutr. Sci., vol. 67, no. 3, pp. 183–190, Sep. 2017, doi: 10.1515/pjfns-2016-0025.
  • [7] S. Jafarzadeh, A. Salehabadi, and S. M. Jafari, “Metal Nanoparticles as Antimicrobial Agents in Food Packaging,” Handbook of Food Nanotechnology: Applications and Approaches, pp. 379–414, Jan. 2020, doi: 10.1016/b978-0-12-815866-1.00010-8.
  • [8] F. Göl et al., “Green Synthesis And Characterization Of Camellia Sinensis Mediated Silver Nanoparticles For Antibacterial Ceramic Applications,” Mater. Chem. Phys., vol. 250, p. 123037, Aug. 2020, doi: 10.1016/j.matchemphys.2020.123037.
  • [9] A. Aygun et al., “Biogenic Platinum Nanoparticles Using Black Cumin Seed and Their Potential Usage as Antimicrobial And Anticancer Agent,” J. Pharm. Biomed. Anal., vol. 179, p. 112961, Feb. 2020, doi: 10.1016/j.jpba.2019.112961.
  • [10] U. Kamran, H. N. Bhatti, M. Iqbal, S. Jamil, and M. Zahid, “Biogenic Synthesis, Characterization and Investigation of Photocatalytic and Antimicrobial Activity of Manganese Nanoparticles Synthesized from Cinnamomum Verum Bark Extract,” J. Mol. Struct., vol. 1179, pp. 532–539, Mar. 2019, doi: 10.1016/j.molstruc.2018.11.006.
  • [11] H. Bar et al., “Green Synthesis of Silver Nanoparticles Using Latex of Jatropha Curcas,” Colloids Surf. A Physicochem. Eng. Asp., vol. 339, no. 1–3, pp. 134–139, May 2009, doi: 10.1016/j.colsurfa.2009.02.008.
  • [12] M. Fırat Baran et al., “Altın Nanomalzeme Sentezi ve Karekterizasyonu,” Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, vol. 10, no. 3, pp. 1033–1040, Sep. 2019, doi: 10.24012/DUMF.551865.
  • [13] D. S. Cha and M. S. Chinnan, “Biopolymer-Based Antimicrobial Packaging: A Review,” Crit. Rev. Food Sci. Nutr., vol. 44, no. 4, pp. 223–237, 2004, doi: 10.1080/10408690490464276.
  • [14] A. Aygün et al., “Biological Synthesis Of Silver Nanoparticles Using Rheum Ribes And Evaluation Of Their Anticarcinogenic And Antimicrobial Potential: A Novel Approach In Phytonanotechnology,” J. Pharm. Biomed. Anal., vol. 179, p. 113012, Feb. 2020, doi: 10.1016/j.jpba.2019.113012.
  • [15] D. Pharma et al., “Facile Approach Towards Medical Textiles Via Myco-Synthesis Of Silver Nanoparticles,” vol. 9, no. 13, pp. 11–18, 2017, Accessed: Dec. 20, 2023.
  • [16] S. A. Masurkar, P. R. Chaudhari, V. B. Shidore, and S. P. Kamble, “Rapid Biosynthesis Of Silver Nanoparticles Using Cymbopogan Citratus (Lemongrass) And Its Antimicrobial Activity,” Nano-Micro Letters 2011 3:3, vol. 3, no. 3, pp. 189–194, Sep. 2011, doi: 10.1007/bf03353671.
  • [17] M. Gondwal and G. Joshi Nee Pant, “Synthesis and Catalytic And Biological Activities Of Silver And Copper Nanoparticles Using Cassia occidentalis,” Int. J. Biomater., vol. 2018, 2018, doi: 10.1155/2018/6735426.
  • [18] Z. Yu, W. Wang, F. Kong, M. Lin, and A. Mustapha, “Cellulose Nanofibril/silver Nanoparticle Composite As An Active Food Packaging System And Its Toxicity To Human Colon Cells,” Int. J. Biol. Macromol., vol. 129, pp. 887–894, May 2019, doi: 10.1016/j.ijbiomac.2019.02.084.
  • [19] T. V. Duncan, “Applications Of Nanotechnology In Food Packaging And Food Safety: Barrier Materials, Antimicrobials And Sensors,” J. Colloid Interface Sci., vol. 363, no. 1, pp. 1–24, Nov. 2011, doi: 10.1016/j.jcis.2011.07.017.
  • [20] S. J. Peighambardoust, S. H. Peighambardoust, N. Mohammadzadeh Pournasir, and P. Pakdel, “Properties of Active Starch-based Films Incorporating a Combination of Ag, ZnO and CuO Nanoparticles For Potential Use In Food Packaging Applications,” Food Packag. Shelf Life, vol. 22, p. 100420, Dec. 2019, doi: 10.1016/j.fpsl.2019.100420.
  • [21] S. A. Wadhwani, U. U. Shedbalkar, R. Singh, and B. A. Chopade, “Biogenic Selenium Nanoparticles: Current Status and Future Prospects,” Appl. Microbiol. Biotechnol., vol. 100, no. 6, pp. 2555–2566, Mar. 2016, doi: 10.1007/S00253-016-7300-7.
  • [22] S. Menon, S. D. Shrudhi, H. Agarwal, and V. K. Shanmugam, “Efficacy of Biogenic Selenium Nanoparticles from an Extract of Ginger towards Evaluation on Anti-Microbial and Anti-Oxidant Activities,” Colloid Interface Sci. Commun., vol. 29, pp. 1–8, Mar. 2019, doi: 10.1016/j.colcom.2018.12.004.
  • [23] G. Sharma et al., “Biomolecule-Mediated Synthesis of Selenium Nanoparticles Using Dried Vitis Vinifera (Raisin) Extract,” Molecules 2014, Vol. 19, Pages 2761-2770, vol. 19, no. 3, pp. 2761–2770, Feb. 2014, doi: 10.3390/molecules19032761.
  • [24] A. K. Mittal, Y. Chisti, and U. C. Banerjee, “Synthesis of Metallic Nanoparticles Using Plant Extracts,” Biotechnol. Adv., vol. 31, no. 2, pp. 346–356, Mar. 2013, doi: 10.1016/j.biotechadv.2013.01.003.
  • [25] E. E. Altuner, F. Gulbagca, R. N. E. Tiri, A. Aygun, and F. Sen, “Highly Efficient Palladium-Zinc Oxide Nanoparticles Synthesized by Biogenic Methods: Characterization, Hydrogen Production and Photocatalytic Activities,” Chemical Engineering Journal Advances, vol. 14, p. 100465, May 2023, doi: 10.1016/j.ceja.2023.100465.
  • [26] S. Menon, S. D. Shrudhi, H. Agarwal, and V. K. Shanmugam, “Efficacy of Biogenic Selenium Nanoparticles from an Extract of Ginger towards Evaluation on Anti-Microbial and Anti-Oxidant Activities,” Colloid Interface Sci. Commun., vol. 29, pp. 1–8, Mar. 2019, doi: 10.1016/j.colcom.2018.12.004.
  • [27] B. Şahin et al., “Cytotoxic Effects of Platinum Nanoparticles Obtained from Pomegranate Extract By The Green Synthesis Method on the MCF-7 Cell Line,” Colloids Surf. B Biointerfaces, vol. 163, pp. 119–124, Mar. 2018, doi: 10.1016/j.colsurfb.2017.12.042.
  • [28] L. Sun, Y. Yin, F. Wang, W. Su, and L. Zhang, “Facile One-pot Green Synthesis of Au–Ag Alloy Nanoparticles Using Sucrose and their Composition-Dependent Photocatalytic Activity for the Reduction Of 4-nitrophenol,” Dalton Transactions, vol. 47, no. 12, pp. 4315–4324, Mar. 2018, doi: 10.1039/c7dt03850J.
  • [29] D. Rueda et al., “Low-cost Tangerine Peel Waste Mediated Production of Titanium Dioxide Nanocrystals: Synthesis and Characterization,” Environ. Nanotechnol. Monit. Manag., vol. 13, May 2020, doi: 10.1016/j.enmm.2020.100285.
  • [30] A. Chahardoli, N. Karimi, F. Sadeghi, and A. Fattahi, “Green Approach For Synthesis Of Gold Nanoparticles From Nigella Arvensis Leaf Extract And Evaluation Of Their Antibacterial, Antioxidant, Cytotoxicity And Catalytic Activities,” Artif. Cells Nanomed. Biotechnol., vol. 46, no. 3, pp. 579–588, Apr. 2018, doi: 10.1080/21691401.2017.1332634.
  • [31] K. M. Rajesh, B. Ajitha, Y. A. K. Reddy, Y. Suneetha, and P. S. Reddy, “Assisted Green Synthesis of Copper Nanoparticles Using Syzygium Aromaticum Bud Extract: Physical, Optical and Antimicrobial Properties,” Optik (Stuttg), vol. 154, pp. 593–600, Feb. 2018, doi: 10.1016/j.ijleo.2017.10.074.
  • [32] U. Kamran, H. N. Bhatti, M. Iqbal, S. Jamil, and M. Zahid, “Biogenic Synthesis, Characterization and Investigation of Photocatalytic and Antimicrobial Activity of Manganese Nanoparticles Synthesized from Cinnamomum Verum Bark Extract,” J Mol Struct, vol. 1179, pp. 532–539, Mar. 2019, doi: 10.1016/j.molstruc.2018.11.006.
  • [33] S. O. Ogunyemi et al., “Green Synthesis of Zinc Oxide Nanoparticles Using Different Plant Extracts and their Antibacterial Activity Against Xanthomonas Oryzae pv. oryzae,” Artif. Cells Nanomed. Biotechnol., vol. 47, no. 1, pp. 341–352, Dec. 2019, doi: 10.1080/21691401.2018.1557671.
  • [34] R. Chaudhary et al., “An Overview of the Algae-Mediated Biosynthesis of Nanoparticles and Their Biomedical Applications,” Biomolecules 2020, Vol. 10, Page 1498, vol. 10, no. 11, p. 1498, Oct. 2020, doi: 10.3390/biom10111498.
  • [35] M. Guilger-Casagrande and R. de Lima, “Synthesis of Silver Nanoparticles Mediated By Fungi: A Review,” Front. Bioeng. Biotechnol., vol. 7, p. 486092, Oct. 2019, doi: 10.3389/fbioe.2019.00287.
  • [36] M. Noman et al., “Use of Biogenic Copper Nanoparticles Synthesized From A Native Escherichia sp. as Photocatalysts for Azo Dye Degradation and Treatment of Textile Effluents,” Environmental Pollution, vol. 257, p. 113514, Feb. 2020, doi: 10.1016/j.envpol.2019.113514.
  • [37] V. N. Kalpana et al.,“Biosynthesis of Zinc Oxide Nanoparticles Using Culture Filtrates of Aspergillus Niger: Antimicrobial Textiles and Dye Degradation Studies,” OpenNano., vol. 3, pp. 48–55, Jan. 2018, doi: 10.1016/j.onano.2018.06.001.
  • [38] M. A. Almalki and A. Y. Z. Khalifa, “Silver Nanoparticles Synthesis from Bacillus sp KFU36 and its Anticancer Effect in Breast Cancer MCF-7 Cells Via Induction of Apoptotic Mechanism,” J Photochem. Photobiol B, vol. 204, p. 111786, Mar. 2020, doi: 10.1016/J.JPHOTOBIOL.2020.111786.
  • [39] P. Mathur, S. Saini, E. Paul, C. Sharma, and P. Mehtani, “Endophytic Fungi Mediated Synthesis of Iron Nanoparticles: Characterization and Application in Methylene Blue Decolorization,” Current Research in Green and Sustainable Chemistry, vol. 4, p. 100053, Jan. 2021, doi: 10.1016/j.crgsc.2020.100053.
  • [40] S. Rajeswaran et al., “Multifarious Pharmacological Applications of Green Routed Eco-Friendly Iron Nanoparticles Synthesized by Streptomyces Sp. (SRT12),” Biol Trace Elem Res, vol. 194, no. 1, pp. 273–283, Mar. 2020, doi: 10.1007/s12011-019-01777-5.
  • [41] S. Ganesan et al., “Green Synthesis of V2O5/ZnO Nanocomposite Materials for Efficient Photocatalytic and Anti-bacterial Applications,” Applied Nanoscience (Switzerland), vol. 13, no. 1, pp. 859–869, Jan. 2023, doi: 10.1007/S13204-021-01923-3.
  • [42] S. Jafarzadeh et al., “Green Synthesis of Nanomaterials for Smart Biopolymer Packaging: Challenges and Outlooks,” Journal of Nanostructure in Chemistry 2023, pp. 1–24, Feb. 2023, doi: 10.1007/S40097-023-00527-3.
  • [43] R. R. Koshy et al., “Preparation of pH Sensitive Film Based on Starch/carbon Nano Dots Incorporating Anthocyanin for Monitoring Spoilage of Pork,” Food Control, vol. 126, p. 108039, Aug. 2021, doi: 10.1016/j.foodcont.2021.108039.
  • [44] A. S. Patil et al., “Photophysical Insights of Highly Transparent, Flexible And Re-emissive PVA @ WTR-CDs Composite thin Films: A Next Generation Food Packaging Material for UV Blocking Applications,” J Photochem. Photobiol. A Chem., vol. 400, p. 112647, Sep. 2020, doi: 10.1016/j.jphotochem.2020.112647.
  • [45] S. Ghosh, S. Roy, J. Naskar, and R. K. Kole, “Plant-Mediated Synthesis of Mono- and Bimetallic (Au-Ag) Nanoparticles: Future Prospects for Food Quality and Safety,” J. Nanomater., vol. 2023, 2023, doi: 10.1155/2023/2781667.
  • [46] N. Kumar, R. Seth, and H. Kumar, “Colorimetric Detection Of Melamine In Milk By Citrate-Stabilized Gold Nanoparticles,” Anal. Biochem., vol. 456, no. 1, pp. 43–49, Jul. 2014, doi: 10.1016/j.ab.2014.04.002.
  • [47] S. Sharma, N. Sharma, and N. Kaushal, “Utilization of Novel Bacteriocin Synthesized Silver Nanoparticles (AgNPs) for Their Application in Antimicrobial Packaging For Preservation Of Tomato Fruit,” Front. Sustain. Food Syst., vol. 7, p. 1072738, Feb. 2023, doi: 10.3389/fsufs.2023.1072738.
  • [48] A. Kumar, A. Choudhary, H. Kaur, S. Mehta, And A. Husen, “Metal-Based Nanoparticles, Sensors, And Their Multifaceted Application in Food Packaging,” Journal of Nanobiotechnology 2021 19:1, vol. 19, no. 1, pp. 1–25, Aug. 2021, doi: 10.1186/s12951-021-00996-0.
  • [49] A. Aygün, S. Özdemir, M. Gülcan, K. Cellat, and F. Şen, “Synthesis And Characterization Of Reishi Mushroom-Mediated Green Synthesis Of Silver Nanoparticles for the Biochemical Applications,” J. Pharm. Biomed. Anal., vol. 178, p. 112970, Jan. 2020, doi: 10.1016/j.jpba.2019.112970.
  • [50] K. Basumatary et al., “Lagerstroemia Speciosa Fruit-Mediated Synthesis Of Silver Nanoparticles And Its Application as Filler in Agar Based Nanocomposite Films For Antimicrobial Food Packaging,” Food Packag. Shelf Life, vol. 17, pp. 99–106, Sep. 2018, doi: 10.1016/j.fpsl.2018.06.003.
  • [51] N. Srikhao et al., “Bioactive Nanocomposite Film Based on Cassava Starch/Polyvinyl Alcohol Containing Green Synthesized Silver Nanoparticles,” J.Polym. Environ., vol. 29, no. 2, pp. 672–684, Feb. 2021, doi: 10.1007/s10924-020-01909-2.
  • [52] L. Zhao, M. Zhang, H. Wang, and S. Devahastin, “Effect of Carbon Dots in Combination With Aqueous Chitosan Solution on Shelf Life and Stability of Soy Milk,” Int. J. Food Microbiol., vol. 326, p. 108650, Aug. 2020, doi: 10.1016/j.ijfoodmicro.2020.108650.
  • [53] D. A. Marrez, A. E. Abdelhamid, and O. M. Darwesh, “Eco-Friendly Cellulose Acetate Green Synthesized Silver Nano-Composite as Antibacterial Packaging System For Food Safety,” Food Packag. Shelf Life, vol. 20, p. 100302, Jun. 2019, doi: 10.1016/j.fpsl.2019.100302.
  • [54] W. Zhang, M. A. Sani, Z. Zhang, D. J. McClements, and S. M. Jafari, “High Performance Biopolymeric Packaging Films Containing Zinc Oxide Nanoparticles for Fresh Food Preservation: A review,” Int. J. Biol. Macromol., vol. 230, p. 123188, Mar. 2023, doi: 10.1016/j.ijbiomac.2023.123188.
  • [55] S. Smaoui et al., “Zinc Oxide Nanoparticles in Meat Packaging: A Systematic Review of Recent Literature,” Food Packag. Shelf Life, vol. 36, p. 101045, Apr. 2023, doi: 10.1016/j.fpsl.2023.101045.
  • [56] V. K. Pandey, S. N. Upadhyay, K. Niranjan, and P. K. Mishra, “Antimicrobial Biodegradable Chitosan-Based Composite Nano-Layers for Food Packaging,” Int. J. Biol. Macromol., vol. 157, pp. 212–219, Aug. 2020, doi: 10.1016/j.ijbiomac.2020.04.149.
  • [57] M. Naseer, U. Aslam, B. Khalid, and B. Chen, “Green Route to Synthesize Zinc Oxide Nanoparticles Using Leaf Extracts of Cassia Fistula and Melia Azadarach and Their Antibacterial Potential,” Scientific Reports 2020 10:1, vol. 10, no. 1, pp. 1–10, Jun. 2020, doi: 10.1038/s41598-020-65949-3.
  • [58] W. Zhang, S. Roy, and J. W. Rhim, “Copper-Based Nanoparticles for Biopolymer-Based Functional Films in Food Packaging Applications,” Compr. Rev. Food Sci. Food Saf., vol. 22, no. 3, pp. 1933–1952, May 2023, doi: 10.1111/1541-4337.13136.
  • [59] V. P. Aswathi, S. Meera, C. G. A. Maria, and M. Nidhin, “Green Synthesis of Nanoparticles from Biodegradable Waste Extracts and Their Applications: A Critical Review,” Nanotechnology for Environmental Engineering 2022 8:2, vol. 8, no. 2, pp. 377–397, Aug. 2022, doi: 10.1007/S41204-022-00276-8.
  • [60] M. Alizadeh Sani et al., “Titanium Dioxide Nanoparticles as Multifunctional Surface-Active Materials for Smart/Active Nanocomposite Packaging Films,” Adv. Colloid Interface Sci., vol. 300, p. 102593, Feb. 2022, doi: 10.1016/j.cis.2021.102593.
  • [61] N. Ajmal et al., “Cost-Effective and Eco-Friendly Synthesis of Titanium Dioxide (TiO2) Nanoparticles Using Fruit’s Peel Agro-Waste Extracts: Characterization, in Vitro Antibacterial, Antioxidant Activities,” Green Chem. Lett. Rev., vol. 12, no. 3, pp. 244–254, Jul. 2019, doi: 10.1080/17518253.2019.1629641.
  • [62] K. R. Singh, V. Nayak, J. Singh, A. K. Singh, and R. P. Singh, “Potentialities of Bioinspired Metal and Metal Oxide Nanoparticles in Biomedical Sciences,” RSC Adv., vol. 11, no. 40, pp. 24722–24746, Jul. 2021, doi: 10.1039/d1ra04273D.
  • [63] G. D. Saratale, R. G. Saratale, D. S. Kim, D. Y. Kim, and H. S. Shin, “Exploiting Fruit Waste Grape Pomace for Silver Nanoparticles Synthesis, Assessing Their Antioxidant, Antidiabetic Potential and Antibacterial Activity Against Human Pathogens: A Novel Approach,” Nanomaterials 2020, Vol. 10, Page 1457, vol. 10, no. 8, p. 1457, Jul. 2020, doi: 10.3390/nano10081457.
  • [64] V. Vorobyova, G. Vasyliev, and M. Skiba, “Eco-Friendly ‘Green’ Synthesis of Silver Nanoparticles With The Black Currant Pomace Extract and its Antibacterial, Electrochemical, and Antioxidant Activity,” Applied Nanoscience (Switzerland), vol. 10, no. 12, pp. 4523–4534, Dec. 2020, doi: 10.1007/s13204-020-01369-z.
  • [65] C. F. Chau, S. H. Wu, and G. C. Yen, “The Development of Regulations for Food Nanotechnology,” Trends Food Sci. Technol., vol. 18, no. 5, pp. 269–280, May 2007, doi: 10.1016/j.tifs.2007.01.007.
  • [66] Z. Yu, W. Wang, F. Kong, M. Lin, and A. Mustapha, “Cellulose Nanofibril/Silver Nanoparticle Composite As An Active Food Packaging System And Its Toxicity to Human Colon Cells,” Int. J. Biol. Macromol., vol. 129, pp. 887–894, May 2019, doi: 10.1016/j.ijbiomac.2019.02.084.
Yıl 2024, Sayı: 010, 13 - 25, 31.08.2024

Öz

Kaynakça

  • [1] B. Kılınç, Ş. Çaklı, “Paketleme Tekniklerinin Balık Ve Kabuklu Su Ürünleri Mikrobiyal Florası Üzerine Etkileri.,” Su Ürünleri Dergisi, vol. 18, no. 1, pp. 279–291, Mar. 2001. [Online]. Available: http://www.egejfas.org/tr/download/article-file/58112
  • [2] M. Vanderroost, P. Ragaert, F. Devlieghere, and B. De Meulenaer, “Intelligent Food Packaging: The Next Generation,” Trends Food Sci. Technol., vol. 39, no. 1, pp. 47–62, Sep. 2014, doi:10.1016/j.tifs.2014.06.009.
  • [3] D. S. Cha and M. S. Chinnan, “Biopolymer-Based Antimicrobial Packaging: A Review,” Crit. Rev. Food Sci. Nutr., vol. 44, no. 4, pp. 223–237, 2004, doi: 10.1080/10408690490464276.
  • [4] S. A. O. Adeyeye, “Food Packaging and Nanotechnology: Safeguarding Consumer Health and Safety,” Nutr. Food Sci., vol. 49, no. 6, pp. 1164–1179, Dec. 2019, doi: 10.1108/nfs-01-2019-0020.
  • [5] M. Hosseinnejad and S. M. Jafari, “Evaluation of Different Factors Affecting Antimicrobial Properties of Chitosan,” Int. J. Biol. Macromol., vol. 85, pp. 467–475, Apr. 2016, doi: 10.1016/j.ijbiomac.2016.01.022.
  • [6] S. Jafarzadeh, A. K. Alias, F. Ariffin, and S. Mahmud, “Characterization of Semolina Protein Film with Incorporated Zinc Oxide Nano Rod Intended for Food Packaging,” Pol. J. Food Nutr. Sci., vol. 67, no. 3, pp. 183–190, Sep. 2017, doi: 10.1515/pjfns-2016-0025.
  • [7] S. Jafarzadeh, A. Salehabadi, and S. M. Jafari, “Metal Nanoparticles as Antimicrobial Agents in Food Packaging,” Handbook of Food Nanotechnology: Applications and Approaches, pp. 379–414, Jan. 2020, doi: 10.1016/b978-0-12-815866-1.00010-8.
  • [8] F. Göl et al., “Green Synthesis And Characterization Of Camellia Sinensis Mediated Silver Nanoparticles For Antibacterial Ceramic Applications,” Mater. Chem. Phys., vol. 250, p. 123037, Aug. 2020, doi: 10.1016/j.matchemphys.2020.123037.
  • [9] A. Aygun et al., “Biogenic Platinum Nanoparticles Using Black Cumin Seed and Their Potential Usage as Antimicrobial And Anticancer Agent,” J. Pharm. Biomed. Anal., vol. 179, p. 112961, Feb. 2020, doi: 10.1016/j.jpba.2019.112961.
  • [10] U. Kamran, H. N. Bhatti, M. Iqbal, S. Jamil, and M. Zahid, “Biogenic Synthesis, Characterization and Investigation of Photocatalytic and Antimicrobial Activity of Manganese Nanoparticles Synthesized from Cinnamomum Verum Bark Extract,” J. Mol. Struct., vol. 1179, pp. 532–539, Mar. 2019, doi: 10.1016/j.molstruc.2018.11.006.
  • [11] H. Bar et al., “Green Synthesis of Silver Nanoparticles Using Latex of Jatropha Curcas,” Colloids Surf. A Physicochem. Eng. Asp., vol. 339, no. 1–3, pp. 134–139, May 2009, doi: 10.1016/j.colsurfa.2009.02.008.
  • [12] M. Fırat Baran et al., “Altın Nanomalzeme Sentezi ve Karekterizasyonu,” Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, vol. 10, no. 3, pp. 1033–1040, Sep. 2019, doi: 10.24012/DUMF.551865.
  • [13] D. S. Cha and M. S. Chinnan, “Biopolymer-Based Antimicrobial Packaging: A Review,” Crit. Rev. Food Sci. Nutr., vol. 44, no. 4, pp. 223–237, 2004, doi: 10.1080/10408690490464276.
  • [14] A. Aygün et al., “Biological Synthesis Of Silver Nanoparticles Using Rheum Ribes And Evaluation Of Their Anticarcinogenic And Antimicrobial Potential: A Novel Approach In Phytonanotechnology,” J. Pharm. Biomed. Anal., vol. 179, p. 113012, Feb. 2020, doi: 10.1016/j.jpba.2019.113012.
  • [15] D. Pharma et al., “Facile Approach Towards Medical Textiles Via Myco-Synthesis Of Silver Nanoparticles,” vol. 9, no. 13, pp. 11–18, 2017, Accessed: Dec. 20, 2023.
  • [16] S. A. Masurkar, P. R. Chaudhari, V. B. Shidore, and S. P. Kamble, “Rapid Biosynthesis Of Silver Nanoparticles Using Cymbopogan Citratus (Lemongrass) And Its Antimicrobial Activity,” Nano-Micro Letters 2011 3:3, vol. 3, no. 3, pp. 189–194, Sep. 2011, doi: 10.1007/bf03353671.
  • [17] M. Gondwal and G. Joshi Nee Pant, “Synthesis and Catalytic And Biological Activities Of Silver And Copper Nanoparticles Using Cassia occidentalis,” Int. J. Biomater., vol. 2018, 2018, doi: 10.1155/2018/6735426.
  • [18] Z. Yu, W. Wang, F. Kong, M. Lin, and A. Mustapha, “Cellulose Nanofibril/silver Nanoparticle Composite As An Active Food Packaging System And Its Toxicity To Human Colon Cells,” Int. J. Biol. Macromol., vol. 129, pp. 887–894, May 2019, doi: 10.1016/j.ijbiomac.2019.02.084.
  • [19] T. V. Duncan, “Applications Of Nanotechnology In Food Packaging And Food Safety: Barrier Materials, Antimicrobials And Sensors,” J. Colloid Interface Sci., vol. 363, no. 1, pp. 1–24, Nov. 2011, doi: 10.1016/j.jcis.2011.07.017.
  • [20] S. J. Peighambardoust, S. H. Peighambardoust, N. Mohammadzadeh Pournasir, and P. Pakdel, “Properties of Active Starch-based Films Incorporating a Combination of Ag, ZnO and CuO Nanoparticles For Potential Use In Food Packaging Applications,” Food Packag. Shelf Life, vol. 22, p. 100420, Dec. 2019, doi: 10.1016/j.fpsl.2019.100420.
  • [21] S. A. Wadhwani, U. U. Shedbalkar, R. Singh, and B. A. Chopade, “Biogenic Selenium Nanoparticles: Current Status and Future Prospects,” Appl. Microbiol. Biotechnol., vol. 100, no. 6, pp. 2555–2566, Mar. 2016, doi: 10.1007/S00253-016-7300-7.
  • [22] S. Menon, S. D. Shrudhi, H. Agarwal, and V. K. Shanmugam, “Efficacy of Biogenic Selenium Nanoparticles from an Extract of Ginger towards Evaluation on Anti-Microbial and Anti-Oxidant Activities,” Colloid Interface Sci. Commun., vol. 29, pp. 1–8, Mar. 2019, doi: 10.1016/j.colcom.2018.12.004.
  • [23] G. Sharma et al., “Biomolecule-Mediated Synthesis of Selenium Nanoparticles Using Dried Vitis Vinifera (Raisin) Extract,” Molecules 2014, Vol. 19, Pages 2761-2770, vol. 19, no. 3, pp. 2761–2770, Feb. 2014, doi: 10.3390/molecules19032761.
  • [24] A. K. Mittal, Y. Chisti, and U. C. Banerjee, “Synthesis of Metallic Nanoparticles Using Plant Extracts,” Biotechnol. Adv., vol. 31, no. 2, pp. 346–356, Mar. 2013, doi: 10.1016/j.biotechadv.2013.01.003.
  • [25] E. E. Altuner, F. Gulbagca, R. N. E. Tiri, A. Aygun, and F. Sen, “Highly Efficient Palladium-Zinc Oxide Nanoparticles Synthesized by Biogenic Methods: Characterization, Hydrogen Production and Photocatalytic Activities,” Chemical Engineering Journal Advances, vol. 14, p. 100465, May 2023, doi: 10.1016/j.ceja.2023.100465.
  • [26] S. Menon, S. D. Shrudhi, H. Agarwal, and V. K. Shanmugam, “Efficacy of Biogenic Selenium Nanoparticles from an Extract of Ginger towards Evaluation on Anti-Microbial and Anti-Oxidant Activities,” Colloid Interface Sci. Commun., vol. 29, pp. 1–8, Mar. 2019, doi: 10.1016/j.colcom.2018.12.004.
  • [27] B. Şahin et al., “Cytotoxic Effects of Platinum Nanoparticles Obtained from Pomegranate Extract By The Green Synthesis Method on the MCF-7 Cell Line,” Colloids Surf. B Biointerfaces, vol. 163, pp. 119–124, Mar. 2018, doi: 10.1016/j.colsurfb.2017.12.042.
  • [28] L. Sun, Y. Yin, F. Wang, W. Su, and L. Zhang, “Facile One-pot Green Synthesis of Au–Ag Alloy Nanoparticles Using Sucrose and their Composition-Dependent Photocatalytic Activity for the Reduction Of 4-nitrophenol,” Dalton Transactions, vol. 47, no. 12, pp. 4315–4324, Mar. 2018, doi: 10.1039/c7dt03850J.
  • [29] D. Rueda et al., “Low-cost Tangerine Peel Waste Mediated Production of Titanium Dioxide Nanocrystals: Synthesis and Characterization,” Environ. Nanotechnol. Monit. Manag., vol. 13, May 2020, doi: 10.1016/j.enmm.2020.100285.
  • [30] A. Chahardoli, N. Karimi, F. Sadeghi, and A. Fattahi, “Green Approach For Synthesis Of Gold Nanoparticles From Nigella Arvensis Leaf Extract And Evaluation Of Their Antibacterial, Antioxidant, Cytotoxicity And Catalytic Activities,” Artif. Cells Nanomed. Biotechnol., vol. 46, no. 3, pp. 579–588, Apr. 2018, doi: 10.1080/21691401.2017.1332634.
  • [31] K. M. Rajesh, B. Ajitha, Y. A. K. Reddy, Y. Suneetha, and P. S. Reddy, “Assisted Green Synthesis of Copper Nanoparticles Using Syzygium Aromaticum Bud Extract: Physical, Optical and Antimicrobial Properties,” Optik (Stuttg), vol. 154, pp. 593–600, Feb. 2018, doi: 10.1016/j.ijleo.2017.10.074.
  • [32] U. Kamran, H. N. Bhatti, M. Iqbal, S. Jamil, and M. Zahid, “Biogenic Synthesis, Characterization and Investigation of Photocatalytic and Antimicrobial Activity of Manganese Nanoparticles Synthesized from Cinnamomum Verum Bark Extract,” J Mol Struct, vol. 1179, pp. 532–539, Mar. 2019, doi: 10.1016/j.molstruc.2018.11.006.
  • [33] S. O. Ogunyemi et al., “Green Synthesis of Zinc Oxide Nanoparticles Using Different Plant Extracts and their Antibacterial Activity Against Xanthomonas Oryzae pv. oryzae,” Artif. Cells Nanomed. Biotechnol., vol. 47, no. 1, pp. 341–352, Dec. 2019, doi: 10.1080/21691401.2018.1557671.
  • [34] R. Chaudhary et al., “An Overview of the Algae-Mediated Biosynthesis of Nanoparticles and Their Biomedical Applications,” Biomolecules 2020, Vol. 10, Page 1498, vol. 10, no. 11, p. 1498, Oct. 2020, doi: 10.3390/biom10111498.
  • [35] M. Guilger-Casagrande and R. de Lima, “Synthesis of Silver Nanoparticles Mediated By Fungi: A Review,” Front. Bioeng. Biotechnol., vol. 7, p. 486092, Oct. 2019, doi: 10.3389/fbioe.2019.00287.
  • [36] M. Noman et al., “Use of Biogenic Copper Nanoparticles Synthesized From A Native Escherichia sp. as Photocatalysts for Azo Dye Degradation and Treatment of Textile Effluents,” Environmental Pollution, vol. 257, p. 113514, Feb. 2020, doi: 10.1016/j.envpol.2019.113514.
  • [37] V. N. Kalpana et al.,“Biosynthesis of Zinc Oxide Nanoparticles Using Culture Filtrates of Aspergillus Niger: Antimicrobial Textiles and Dye Degradation Studies,” OpenNano., vol. 3, pp. 48–55, Jan. 2018, doi: 10.1016/j.onano.2018.06.001.
  • [38] M. A. Almalki and A. Y. Z. Khalifa, “Silver Nanoparticles Synthesis from Bacillus sp KFU36 and its Anticancer Effect in Breast Cancer MCF-7 Cells Via Induction of Apoptotic Mechanism,” J Photochem. Photobiol B, vol. 204, p. 111786, Mar. 2020, doi: 10.1016/J.JPHOTOBIOL.2020.111786.
  • [39] P. Mathur, S. Saini, E. Paul, C. Sharma, and P. Mehtani, “Endophytic Fungi Mediated Synthesis of Iron Nanoparticles: Characterization and Application in Methylene Blue Decolorization,” Current Research in Green and Sustainable Chemistry, vol. 4, p. 100053, Jan. 2021, doi: 10.1016/j.crgsc.2020.100053.
  • [40] S. Rajeswaran et al., “Multifarious Pharmacological Applications of Green Routed Eco-Friendly Iron Nanoparticles Synthesized by Streptomyces Sp. (SRT12),” Biol Trace Elem Res, vol. 194, no. 1, pp. 273–283, Mar. 2020, doi: 10.1007/s12011-019-01777-5.
  • [41] S. Ganesan et al., “Green Synthesis of V2O5/ZnO Nanocomposite Materials for Efficient Photocatalytic and Anti-bacterial Applications,” Applied Nanoscience (Switzerland), vol. 13, no. 1, pp. 859–869, Jan. 2023, doi: 10.1007/S13204-021-01923-3.
  • [42] S. Jafarzadeh et al., “Green Synthesis of Nanomaterials for Smart Biopolymer Packaging: Challenges and Outlooks,” Journal of Nanostructure in Chemistry 2023, pp. 1–24, Feb. 2023, doi: 10.1007/S40097-023-00527-3.
  • [43] R. R. Koshy et al., “Preparation of pH Sensitive Film Based on Starch/carbon Nano Dots Incorporating Anthocyanin for Monitoring Spoilage of Pork,” Food Control, vol. 126, p. 108039, Aug. 2021, doi: 10.1016/j.foodcont.2021.108039.
  • [44] A. S. Patil et al., “Photophysical Insights of Highly Transparent, Flexible And Re-emissive PVA @ WTR-CDs Composite thin Films: A Next Generation Food Packaging Material for UV Blocking Applications,” J Photochem. Photobiol. A Chem., vol. 400, p. 112647, Sep. 2020, doi: 10.1016/j.jphotochem.2020.112647.
  • [45] S. Ghosh, S. Roy, J. Naskar, and R. K. Kole, “Plant-Mediated Synthesis of Mono- and Bimetallic (Au-Ag) Nanoparticles: Future Prospects for Food Quality and Safety,” J. Nanomater., vol. 2023, 2023, doi: 10.1155/2023/2781667.
  • [46] N. Kumar, R. Seth, and H. Kumar, “Colorimetric Detection Of Melamine In Milk By Citrate-Stabilized Gold Nanoparticles,” Anal. Biochem., vol. 456, no. 1, pp. 43–49, Jul. 2014, doi: 10.1016/j.ab.2014.04.002.
  • [47] S. Sharma, N. Sharma, and N. Kaushal, “Utilization of Novel Bacteriocin Synthesized Silver Nanoparticles (AgNPs) for Their Application in Antimicrobial Packaging For Preservation Of Tomato Fruit,” Front. Sustain. Food Syst., vol. 7, p. 1072738, Feb. 2023, doi: 10.3389/fsufs.2023.1072738.
  • [48] A. Kumar, A. Choudhary, H. Kaur, S. Mehta, And A. Husen, “Metal-Based Nanoparticles, Sensors, And Their Multifaceted Application in Food Packaging,” Journal of Nanobiotechnology 2021 19:1, vol. 19, no. 1, pp. 1–25, Aug. 2021, doi: 10.1186/s12951-021-00996-0.
  • [49] A. Aygün, S. Özdemir, M. Gülcan, K. Cellat, and F. Şen, “Synthesis And Characterization Of Reishi Mushroom-Mediated Green Synthesis Of Silver Nanoparticles for the Biochemical Applications,” J. Pharm. Biomed. Anal., vol. 178, p. 112970, Jan. 2020, doi: 10.1016/j.jpba.2019.112970.
  • [50] K. Basumatary et al., “Lagerstroemia Speciosa Fruit-Mediated Synthesis Of Silver Nanoparticles And Its Application as Filler in Agar Based Nanocomposite Films For Antimicrobial Food Packaging,” Food Packag. Shelf Life, vol. 17, pp. 99–106, Sep. 2018, doi: 10.1016/j.fpsl.2018.06.003.
  • [51] N. Srikhao et al., “Bioactive Nanocomposite Film Based on Cassava Starch/Polyvinyl Alcohol Containing Green Synthesized Silver Nanoparticles,” J.Polym. Environ., vol. 29, no. 2, pp. 672–684, Feb. 2021, doi: 10.1007/s10924-020-01909-2.
  • [52] L. Zhao, M. Zhang, H. Wang, and S. Devahastin, “Effect of Carbon Dots in Combination With Aqueous Chitosan Solution on Shelf Life and Stability of Soy Milk,” Int. J. Food Microbiol., vol. 326, p. 108650, Aug. 2020, doi: 10.1016/j.ijfoodmicro.2020.108650.
  • [53] D. A. Marrez, A. E. Abdelhamid, and O. M. Darwesh, “Eco-Friendly Cellulose Acetate Green Synthesized Silver Nano-Composite as Antibacterial Packaging System For Food Safety,” Food Packag. Shelf Life, vol. 20, p. 100302, Jun. 2019, doi: 10.1016/j.fpsl.2019.100302.
  • [54] W. Zhang, M. A. Sani, Z. Zhang, D. J. McClements, and S. M. Jafari, “High Performance Biopolymeric Packaging Films Containing Zinc Oxide Nanoparticles for Fresh Food Preservation: A review,” Int. J. Biol. Macromol., vol. 230, p. 123188, Mar. 2023, doi: 10.1016/j.ijbiomac.2023.123188.
  • [55] S. Smaoui et al., “Zinc Oxide Nanoparticles in Meat Packaging: A Systematic Review of Recent Literature,” Food Packag. Shelf Life, vol. 36, p. 101045, Apr. 2023, doi: 10.1016/j.fpsl.2023.101045.
  • [56] V. K. Pandey, S. N. Upadhyay, K. Niranjan, and P. K. Mishra, “Antimicrobial Biodegradable Chitosan-Based Composite Nano-Layers for Food Packaging,” Int. J. Biol. Macromol., vol. 157, pp. 212–219, Aug. 2020, doi: 10.1016/j.ijbiomac.2020.04.149.
  • [57] M. Naseer, U. Aslam, B. Khalid, and B. Chen, “Green Route to Synthesize Zinc Oxide Nanoparticles Using Leaf Extracts of Cassia Fistula and Melia Azadarach and Their Antibacterial Potential,” Scientific Reports 2020 10:1, vol. 10, no. 1, pp. 1–10, Jun. 2020, doi: 10.1038/s41598-020-65949-3.
  • [58] W. Zhang, S. Roy, and J. W. Rhim, “Copper-Based Nanoparticles for Biopolymer-Based Functional Films in Food Packaging Applications,” Compr. Rev. Food Sci. Food Saf., vol. 22, no. 3, pp. 1933–1952, May 2023, doi: 10.1111/1541-4337.13136.
  • [59] V. P. Aswathi, S. Meera, C. G. A. Maria, and M. Nidhin, “Green Synthesis of Nanoparticles from Biodegradable Waste Extracts and Their Applications: A Critical Review,” Nanotechnology for Environmental Engineering 2022 8:2, vol. 8, no. 2, pp. 377–397, Aug. 2022, doi: 10.1007/S41204-022-00276-8.
  • [60] M. Alizadeh Sani et al., “Titanium Dioxide Nanoparticles as Multifunctional Surface-Active Materials for Smart/Active Nanocomposite Packaging Films,” Adv. Colloid Interface Sci., vol. 300, p. 102593, Feb. 2022, doi: 10.1016/j.cis.2021.102593.
  • [61] N. Ajmal et al., “Cost-Effective and Eco-Friendly Synthesis of Titanium Dioxide (TiO2) Nanoparticles Using Fruit’s Peel Agro-Waste Extracts: Characterization, in Vitro Antibacterial, Antioxidant Activities,” Green Chem. Lett. Rev., vol. 12, no. 3, pp. 244–254, Jul. 2019, doi: 10.1080/17518253.2019.1629641.
  • [62] K. R. Singh, V. Nayak, J. Singh, A. K. Singh, and R. P. Singh, “Potentialities of Bioinspired Metal and Metal Oxide Nanoparticles in Biomedical Sciences,” RSC Adv., vol. 11, no. 40, pp. 24722–24746, Jul. 2021, doi: 10.1039/d1ra04273D.
  • [63] G. D. Saratale, R. G. Saratale, D. S. Kim, D. Y. Kim, and H. S. Shin, “Exploiting Fruit Waste Grape Pomace for Silver Nanoparticles Synthesis, Assessing Their Antioxidant, Antidiabetic Potential and Antibacterial Activity Against Human Pathogens: A Novel Approach,” Nanomaterials 2020, Vol. 10, Page 1457, vol. 10, no. 8, p. 1457, Jul. 2020, doi: 10.3390/nano10081457.
  • [64] V. Vorobyova, G. Vasyliev, and M. Skiba, “Eco-Friendly ‘Green’ Synthesis of Silver Nanoparticles With The Black Currant Pomace Extract and its Antibacterial, Electrochemical, and Antioxidant Activity,” Applied Nanoscience (Switzerland), vol. 10, no. 12, pp. 4523–4534, Dec. 2020, doi: 10.1007/s13204-020-01369-z.
  • [65] C. F. Chau, S. H. Wu, and G. C. Yen, “The Development of Regulations for Food Nanotechnology,” Trends Food Sci. Technol., vol. 18, no. 5, pp. 269–280, May 2007, doi: 10.1016/j.tifs.2007.01.007.
  • [66] Z. Yu, W. Wang, F. Kong, M. Lin, and A. Mustapha, “Cellulose Nanofibril/Silver Nanoparticle Composite As An Active Food Packaging System And Its Toxicity to Human Colon Cells,” Int. J. Biol. Macromol., vol. 129, pp. 887–894, May 2019, doi: 10.1016/j.ijbiomac.2019.02.084.
Toplam 66 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Ambalajlama, Saklama ve İşleme
Bölüm Derlemeler
Yazarlar

Cansu Çatal 0009-0000-9763-6678

Ayşenur Aygün 0000-0002-8547-2589

Rima Nour Elhouda Tiri 0000-0001-8153-3738

Fatih Şen 0000-0001-6843-9026

Yayımlanma Tarihi 31 Ağustos 2024
Gönderilme Tarihi 28 Şubat 2024
Kabul Tarihi 27 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Sayı: 010

Kaynak Göster

APA Çatal, C., Aygün, A., Tiri, R. N. E., Şen, F. (2024). Green synthesis of nanoparticles the importance of use in food packaging: an overview. Journal of Scientific Reports-B(010), 13-25.
AMA Çatal C, Aygün A, Tiri RNE, Şen F. Green synthesis of nanoparticles the importance of use in food packaging: an overview. Journal of Scientific Reports-B. Ağustos 2024;(010):13-25.
Chicago Çatal, Cansu, Ayşenur Aygün, Rima Nour Elhouda Tiri, ve Fatih Şen. “Green Synthesis of Nanoparticles the Importance of Use in Food Packaging: An Overview”. Journal of Scientific Reports-B, sy. 010 (Ağustos 2024): 13-25.
EndNote Çatal C, Aygün A, Tiri RNE, Şen F (01 Ağustos 2024) Green synthesis of nanoparticles the importance of use in food packaging: an overview. Journal of Scientific Reports-B 010 13–25.
IEEE C. Çatal, A. Aygün, R. N. E. Tiri, ve F. Şen, “Green synthesis of nanoparticles the importance of use in food packaging: an overview”, Journal of Scientific Reports-B, sy. 010, ss. 13–25, Ağustos 2024.
ISNAD Çatal, Cansu vd. “Green Synthesis of Nanoparticles the Importance of Use in Food Packaging: An Overview”. Journal of Scientific Reports-B 010 (Ağustos 2024), 13-25.
JAMA Çatal C, Aygün A, Tiri RNE, Şen F. Green synthesis of nanoparticles the importance of use in food packaging: an overview. Journal of Scientific Reports-B. 2024;:13–25.
MLA Çatal, Cansu vd. “Green Synthesis of Nanoparticles the Importance of Use in Food Packaging: An Overview”. Journal of Scientific Reports-B, sy. 010, 2024, ss. 13-25.
Vancouver Çatal C, Aygün A, Tiri RNE, Şen F. Green synthesis of nanoparticles the importance of use in food packaging: an overview. Journal of Scientific Reports-B. 2024(010):13-25.