BibTex RIS Kaynak Göster

147 Atomlu Co-Pd Nanoalaşımlarının Erime Dinamiği

Yıl 2016, Cilt: 6 Sayı: 2, 369 - 376, 01.06.2016

Öz

Bu çalışmada, gaz fazındaki 147 atomlu Co-Pd nanoalaşımlarının teorik bir çalışması, atomlar arası etkileşmeler Gupta çok cisim potansiyel enerji fonksiyonu ile modellenerek yapılmıştır. ComPdn m+n=147 nanoalaşımlarının bazı kompozisyonları için en düşük enerjili yapılar Basin Hopping optimizasyon metodu ile elde edilmiştir. Tüm kompozisyonlar için m=0, 1, 13, 55, 92, 134, 147 ikosahedron geometrisi belirlenmiştir. Co13Pdçalışmada aynı zamanda Co-Pd nanoalaşımlarının iç ve kabuk katmanlarını da içeren erime dinamiği incelendi. Genel olarak erimenin en dıştaki kabuktan başladığı sonucu elde edildi

Kaynakça

  • Arslan, H. 2007. Global minima for Pd-N (N=5-80) clusters described by Sutton-Chen potential. Int J Mod Phys C, 18: 1351-1359.
  • Arslan, H. 2008. Structures and energetic of Palladium-Cobalt binary clusters. Int J Mod Phys C, 19: 1243-1255.
  • Arslan, H., Garip, AK., Johnston, RL. 2015. Theoretical study of the structures and chemical ordering of cobalt-palladium nanoclusters. Phys Chem Chem Phys, 17: 28311-28321.
  • Arslan, H., Irmak, AE. 2009. Heat Capacity of 13-and 19-Atom Pd-Co Binary Clusters: Parallel Tempering Monte Carlo Study. Int J Mod Phys C, 20: 1737-1747.
  • Asgari, M., Behnejad, H., Fortunelli, A. 2014. Composition- dependent melting behaviour of NaxK55-x core-shell nanoalloys. Mol Phys, 112: 2933-2944.
  • Baletto, F., Ferrando, R. 2005. Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects. Rev Mod Phys, 77: 371-423.
  • Baletto, F., Ferrando, R., Fortunelli, A., Montalenti, F., Mottet, C. 2002. Crossover among structural motifs in transition and noble-metal clusters. J Chem Phys, 116: 3856-3863.
  • Breaux, GA., Neal, CM., Cao, B., Jarrold, MF. 2005. Melting, premelting, and structural transitions in size-selected aluminum clusters with around 55 atoms. Phys Rev Lett, 94.
  • Chen, FY., Curley, BC., Rossi, G., Johnston, RL. 2007. Structure, melting, and thermal stability of 55 atom Ag-Au nanoalloys. J Phys Chem C, 111: 9157-9165.
  • Cheng, DJ., Huang, SP., Wang, WC. 2006. (a) Thermal behavior of core-shell and three-shell layered clusters: Melting of Cu1Au54 and Cu12Au43. Phys Rev B, 74.
  • Cheng, DJ., Wang, WC., Huang, SP. 2006. (b) The onion-ring structure for Pd-Pt bimetallic clusters. J Phys Chem B, 110: 16193-16196.
  • Cheng, DJ., Wang, WC., Huang, SP. 2008. Melting phenomena: effect of composition for 55-atom Ag-Pd bimetallic clusters. Phys Chem Chem Phys, 10: 2513-2518.
  • Cleri, F., Rosato, V. 1993. Tight-Binding Potentials for Transition-Metals and Alloys. Phys Rev B, 48: 22-33.
  • Ferrando, R., Jellinek, J., Johnston, R.L. 2008. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem Rev, 108: 845-910.
  • Garip, A.K., Arslan, H. 2014. 40 atomlu Pd-Co ikili metal atom topaklarının yapısal özelliklerinin incelenmesi. Karaelmas Fen ve Mühendislik Dergisi, 4: 38-45.
  • Gonzalez, R.I., Garcia, G., Ramirez, R., Kiwi, M., Valdivia, JA., Rahman, T.S. 2011. Temperature-dependent properties of 147-and 309-atom iron-gold nanoclusters. Phys Rev B, 83.
  • Wen, Y.H., Huang, R., Zeng, X.M., Shao, G.F., Sun, S.G. 2014. Tetrahexahedral Pt-Pd alloy nanocatalysts with high-index facets: an atomistic perspective on thermodynamic and shape stabilities. J Mater Chem A, 2: 1375-1382.
  • Xiao, L., Zhuang, L., Liu, Y., Lu, J.T., Abruna, H.D. 2009. Activating Pd by Morphology Tailoring for Oxygen Reduction. J Am Chem Soc, 131: 602-608.
  • Zhang, H.J., Watanabe, T., Okumura, M., Haruta, M., Toshima, N. 2012. Catalytically highly active top gold atom on palladium nanocluster. Nat Mater, 11: 49-52.
  • Zhang, L., Wan, L., Ma, Y.R., Chen, Y., Zhou, Y.M., Tang, Y.W., Lu, T.H. 2013. Crystalline palladium-cobalt alloy nanoassemblies with enhanced activity and stability for the formic acid oxidation reaction. Appl Catal B-Environ, 138: 229-235.

Melting Dynamics of 147 Atom Co-Pd Nanoalloys

Yıl 2016, Cilt: 6 Sayı: 2, 369 - 376, 01.06.2016

Öz

A theoretical study has been made of 147 atom Co-Pd nanoalloy clusters in gas phase, with the interatomic interactions modelled by Gupta many-body potential. Basin Hopping algorithm has been used to find the lowest energy structures for some compositions of ComPdn m+n=147 clusters. Icosahedron geometry has beenidentified for all compositions m=0, 1, 13, 55, 92, 134, 147 . Co13Pd134 nanoalloy has the highest melting point among for all these compositions. It’s also investigated the melting dynamics including core and shell layers of Co-Pd clusters in this study. It’s concluded that melting begins from outermost shell generally

Kaynakça

  • Arslan, H. 2007. Global minima for Pd-N (N=5-80) clusters described by Sutton-Chen potential. Int J Mod Phys C, 18: 1351-1359.
  • Arslan, H. 2008. Structures and energetic of Palladium-Cobalt binary clusters. Int J Mod Phys C, 19: 1243-1255.
  • Arslan, H., Garip, AK., Johnston, RL. 2015. Theoretical study of the structures and chemical ordering of cobalt-palladium nanoclusters. Phys Chem Chem Phys, 17: 28311-28321.
  • Arslan, H., Irmak, AE. 2009. Heat Capacity of 13-and 19-Atom Pd-Co Binary Clusters: Parallel Tempering Monte Carlo Study. Int J Mod Phys C, 20: 1737-1747.
  • Asgari, M., Behnejad, H., Fortunelli, A. 2014. Composition- dependent melting behaviour of NaxK55-x core-shell nanoalloys. Mol Phys, 112: 2933-2944.
  • Baletto, F., Ferrando, R. 2005. Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects. Rev Mod Phys, 77: 371-423.
  • Baletto, F., Ferrando, R., Fortunelli, A., Montalenti, F., Mottet, C. 2002. Crossover among structural motifs in transition and noble-metal clusters. J Chem Phys, 116: 3856-3863.
  • Breaux, GA., Neal, CM., Cao, B., Jarrold, MF. 2005. Melting, premelting, and structural transitions in size-selected aluminum clusters with around 55 atoms. Phys Rev Lett, 94.
  • Chen, FY., Curley, BC., Rossi, G., Johnston, RL. 2007. Structure, melting, and thermal stability of 55 atom Ag-Au nanoalloys. J Phys Chem C, 111: 9157-9165.
  • Cheng, DJ., Huang, SP., Wang, WC. 2006. (a) Thermal behavior of core-shell and three-shell layered clusters: Melting of Cu1Au54 and Cu12Au43. Phys Rev B, 74.
  • Cheng, DJ., Wang, WC., Huang, SP. 2006. (b) The onion-ring structure for Pd-Pt bimetallic clusters. J Phys Chem B, 110: 16193-16196.
  • Cheng, DJ., Wang, WC., Huang, SP. 2008. Melting phenomena: effect of composition for 55-atom Ag-Pd bimetallic clusters. Phys Chem Chem Phys, 10: 2513-2518.
  • Cleri, F., Rosato, V. 1993. Tight-Binding Potentials for Transition-Metals and Alloys. Phys Rev B, 48: 22-33.
  • Ferrando, R., Jellinek, J., Johnston, R.L. 2008. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem Rev, 108: 845-910.
  • Garip, A.K., Arslan, H. 2014. 40 atomlu Pd-Co ikili metal atom topaklarının yapısal özelliklerinin incelenmesi. Karaelmas Fen ve Mühendislik Dergisi, 4: 38-45.
  • Gonzalez, R.I., Garcia, G., Ramirez, R., Kiwi, M., Valdivia, JA., Rahman, T.S. 2011. Temperature-dependent properties of 147-and 309-atom iron-gold nanoclusters. Phys Rev B, 83.
  • Wen, Y.H., Huang, R., Zeng, X.M., Shao, G.F., Sun, S.G. 2014. Tetrahexahedral Pt-Pd alloy nanocatalysts with high-index facets: an atomistic perspective on thermodynamic and shape stabilities. J Mater Chem A, 2: 1375-1382.
  • Xiao, L., Zhuang, L., Liu, Y., Lu, J.T., Abruna, H.D. 2009. Activating Pd by Morphology Tailoring for Oxygen Reduction. J Am Chem Soc, 131: 602-608.
  • Zhang, H.J., Watanabe, T., Okumura, M., Haruta, M., Toshima, N. 2012. Catalytically highly active top gold atom on palladium nanocluster. Nat Mater, 11: 49-52.
  • Zhang, L., Wan, L., Ma, Y.R., Chen, Y., Zhou, Y.M., Tang, Y.W., Lu, T.H. 2013. Crystalline palladium-cobalt alloy nanoassemblies with enhanced activity and stability for the formic acid oxidation reaction. Appl Catal B-Environ, 138: 229-235.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Research Article
Yazarlar

Ali Kemal Garip Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 6 Sayı: 2

Kaynak Göster

APA Garip, A. K. (2016). 147 Atomlu Co-Pd Nanoalaşımlarının Erime Dinamiği. Karaelmas Fen Ve Mühendislik Dergisi, 6(2), 369-376.
AMA Garip AK. 147 Atomlu Co-Pd Nanoalaşımlarının Erime Dinamiği. Karaelmas Fen ve Mühendislik Dergisi. Haziran 2016;6(2):369-376.
Chicago Garip, Ali Kemal. “147 Atomlu Co-Pd Nanoalaşımlarının Erime Dinamiği”. Karaelmas Fen Ve Mühendislik Dergisi 6, sy. 2 (Haziran 2016): 369-76.
EndNote Garip AK (01 Haziran 2016) 147 Atomlu Co-Pd Nanoalaşımlarının Erime Dinamiği. Karaelmas Fen ve Mühendislik Dergisi 6 2 369–376.
IEEE A. K. Garip, “147 Atomlu Co-Pd Nanoalaşımlarının Erime Dinamiği”, Karaelmas Fen ve Mühendislik Dergisi, c. 6, sy. 2, ss. 369–376, 2016.
ISNAD Garip, Ali Kemal. “147 Atomlu Co-Pd Nanoalaşımlarının Erime Dinamiği”. Karaelmas Fen ve Mühendislik Dergisi 6/2 (Haziran 2016), 369-376.
JAMA Garip AK. 147 Atomlu Co-Pd Nanoalaşımlarının Erime Dinamiği. Karaelmas Fen ve Mühendislik Dergisi. 2016;6:369–376.
MLA Garip, Ali Kemal. “147 Atomlu Co-Pd Nanoalaşımlarının Erime Dinamiği”. Karaelmas Fen Ve Mühendislik Dergisi, c. 6, sy. 2, 2016, ss. 369-76.
Vancouver Garip AK. 147 Atomlu Co-Pd Nanoalaşımlarının Erime Dinamiği. Karaelmas Fen ve Mühendislik Dergisi. 2016;6(2):369-76.