Research Article
BibTex RIS Cite

Türkiye'nin Kuzeybatısında Yetişen Sarıçam, Karaçam ve Kazdağı Göknar Meşcerelerinde Rüzgâr Devrik Zararının Toprak Özelliklerine Etkileri

Year 2021, , 229 - 243, 31.12.2021
https://doi.org/10.17475/kastorman.1049328

Abstract

Çalışmanın Amacı: Türkiye'nin kuzeybatısı Kazdağı göknarı (Abies nordmanniana subsp. equi-trojani), sarıçam (Pinus sylvestris L.) ve karaçam (Pinus nigra Arnold.) meĢcerelerinde rüzgâr devriği zararının toprak özelliklerine kısa vadeli etkileri ortaya konmaya çalıĢılmıĢtır.
Çalışma alanı: ÇalıĢma Kastamonu ve Sinop bölgelerinde gerçekleĢtirilmiĢtir.
Materyal ve yöntem: 2013 yılında meydana gelen rüzgâr devriğinin etkilerini anlamak için, devrik görülen ve görülmeyen alanların 0-30 cm derinlik kademesinden toprak örnekleri 2018 yılında (5 yıl sonra) alınmıĢ ve bazı fiziksel ve kimyasal özellikleri belirlenmiĢtir.
Temel Sonuçlar: ÇalıĢma alanında sıcaklık, yağıĢ ve rüzgâr hızındaki artıĢın rüzgâr devriği zararına neden olduğu değerlenmiĢtir. Toprağın fiziksel ve kimyasal özellikleri üç farklı ağaç türü ve aynı zamanda rüzgâr devriği görülen ve görülmeyen alanlar arasında önemli derecede farklılıklar göstermiĢtir.
Araştırma vurguları: Rüzgâr devriğinden sonra; TOK ve TA stokları, P ve K artıĢı organik madde birikimi ile iliĢkili olabilir. Bununla beraber, bu iliĢkiyi açıklamak için tek bir mekanizma belirleyemedik. Bu nedenle, toprağın kimyasal özellikleri ile kök özellikleri arasındaki iliĢkileri tanımlamak için, üç ağaç türünün kök-toprak etkileĢimlerinin ileriki çalıĢmalarda detaylı olarak incelenmesi gerekmektedir.

References

  • Adams, J. M., Faure, H. F. D. L., Faure-Denard, L., McGlade, J. M. & Woodward, F. I. (1990). Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature, 348(6303), 711-714.
  • Akbaş, B., Akdeniz, N., Aksay, A., Altun, İ.E., Balcı, V., Bilginer, E., Bilgiç, T., Duru, M., Ercan, T., Gedik, İ., Günay, Y., Güven, İ.H., Hakyemez, H.Y., Konak, N., Papak, İ., Pehlivan, Ş., Sevin, M., Şenel, M., Tarhan, N., Turhan, N., Türkecan, A., Ulu, Ü., Uğuz, M.F., Yurtsever, A. ve diğerleri, 2011, 1:1.250.000 ölçekli Türkiye Jeoloji Haritası. Maden Tetkik ve Arama Genel Müdürlüğü Yayını, Ankara-Türkiye.
  • Allen, S. E. (1989). Chemical analysis of ecological materials. Blackwell, Oxford.
  • Batjes, N. H. (1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47(2), 151-163.
  • Beatty, S. W. & Stone, E. L. (1986). The variety of soil microsites created by tree falls. Canadian Journal of Forest Research, 16(3), 539-548.
  • Blake, G. R. & Hartge, K. H. (1986). Bulk density 1. Methods of soil analysis: part 1-physical and mineralogical methods, (methodsofsoilan1), 363-375.
  • Bouget, C. & Duelli, P. (2004). The effects of windthrow on forest insect communities: a literature review. Biological Conservation, 118(3), 281-299.
  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils 1. Agronomy Journal, 54(5), 464-465.
  • Brais, S., Camiré, C. & Paré, D. (1995). Impacts of whole-tree harvesting and winter windrowing on soil pH and base status of clayey sites of northwestern Quebec. Canadian Journal of Forest Research, 25(6), 997-1007.
  • Canham, C. D., Papaik, M. J. & Latty, E. F. (2001). Interspecific variation in susceptibility to windthrow as a function of tree size and storm severity for northern temperate tree species. Canadian Journal of Forest Research, 31(1), 1-10.
  • Coutts, M. P. (1986). Components of tree stability in Sitka spruce on peaty gley soil. Forestry: An International Journal of Forest Research, 59(2), 173-197.
  • Covington, W. W. (1981). Changes in forest floor organic matter and nutrient content following clear cutting in northern hardwoods. Ecology, 62(1), 41-48.
  • Don, A., Bärwolff, M., Kalbitz, K., Andruschkewitsch, R., Jungkunst, H. F. & Schulze, E. D. (2012). No rapid soil carbon loss after a windthrow event in the High Tatra. Forest Ecology and Management, 276, 239-246.
  • Engür, M. O. (2010). Rüzgar devriği hasarlarinda durum değerlendirmesi ve odun üretimi. III. Ulusal Karadeniz Ormancılık Kongresi 20-22 Mayıs 2010, Cilt: III Sayfa: 905-914
  • Engür, M. O. (2014). Odun Üretiminde Çalışanların eğitimi, Ağaç Kesme ve Boylama Operatörü. TC Orman ve Su İşleri Bakanlığı, Orman Genel Müdürlüğü.
  • ESBN (European Soil Bureau Network European Commission) (2005). Soil Atlas of Europe. 128 pp Office for Official Publications of the European Communities, L-2995 Luxembourg.
  • Fraser, A. I. & Gardiner, J. B. H. (1967). Rooting and stability in Sitka spruce (No. 40). London: HM Stationery Office.
  • Gáfriková, J., Hanajík, P., Vykouková, I., Zvarík, M., Ferianc, P., Drahovská, H. & Puškárová, A. (2019). Dystric Cambisol properties at windthrow sites with secondary succession developed after 12 years under different conditions in Tatra National Park. Biologia, 74(9), 1099-1114.
  • Gáfriková, J., Zvarík, M., Hanajík, P., Súlovský, M. & Vykouková, I. (2020). Impact of natural disturbance, forest management and vegetation cover on topsoil biochemical characteristics of Tatra Mts.(Slovakia). Journal of Mountain Science, 17, 1294-1309.
  • Gardiner, B., Blennow, K., Carnus, J. M., Fleischer, P., Ingemarsson, F., Landmann, G. & Peyron, J. L. (2010). Destructive storms in European forests: past and forthcoming impacts. EFIATLANTIC, European Forest Institute, Cestas, France.
  • Gömöryová, E., Střelcová, K., Škvarrnina, J., Bebej, J. & Gömöry, D. (2008). The impact of windthrow and fire disturbances on selected soil properties in the Tatra National Park. Soil and Water Research, 3(Special Issue No. 1), S74-S80.
  • Hartmann, A., Kobler, J., Kralik, M., Dirnböck, T., Humer, F. & Weiler, M. (2016). Model-aided quantification of dissolved carbon and nitrogen release after windthrow disturbance in an Austrian karst system. Biogeosciences, 13(1), 159-174.
  • Hendrickson, O. Q., Chatarpaul, L. & Burgess, D. (1989). Nutrient cycling following whole-tree and conventional harvest in northern mixed forest. Canadian Journal of Forest Research, 19(6), 725-735. Jackson, M. L. (1962). Soil chemical analysis. (Constable and Company, Ltd: London).
  • Karaöz, M. Ö. (1989). Toprakların su ekonomisine ilişkin bazı fiziksel özelliklerinin laboratuvarda belirlenmesi yöntemleri. İstanbul Üniversitesi Orman Fakültesi Dergisi, 39(2), 133-144.
  • Klaus, M., Holsten, A., Hostert, P. & Kropp, J. P. (2011). Integrated methodology to assess windthrow impacts on forest stands under climate change. Forest Ecology and Management, 261(11), 1799-1810.
  • Kooch, Y. (2007). Determination and differentiation of ecosystem units in relation to soil properties in Khanilan forests (Doctoral dissertation, M.Sc. thesis of Forestry). Persian: Publication of Mazandaran University), 130.
  • Kooch, Y., Darabi, S. M. & Hosseini, S. M. (2015). Effects of pits and mounds following windthrow events on soil features and greenhouse gas fluxes in a temperate forest. Pedosphere, 25(6), 853-867.
  • Kooch, Y., Hosseini, S. M., Zaccone, C., Jalilvand, H. & Hojjati, S. M. (2012). Soil organic carbon sequestration as affected by afforestation: the Darab Kola forest (North of Iran) case study. Journal of Environmental Monitoring, 14(9), 2438-2446.
  • Kozlowski, T. T. & Pallardy, S. G. (1997). Chapter 10 - Mineral Nutrition, Editor(s): Theodore T. Kozlowski, Stephen G. Pallardy, Physiology of Woody Plants (Second Edition), Academic Press, 210-236.
  • Kramer, M. G., Hansen, A. J., Taper, M. L. & Kissinger, E. J. (2001). Abiotic controls on long‐term windthrow disturbance and temperate rain forest dynamics in southeast Alaska. Ecology, 82(10), 2749-2768.
  • Kramer, M. G., Sollins, P. & Sletten, R. S. (2004). Soil carbon dynamics across a windthrow disturbance sequence in southeast Alaska. Ecology, 85(8), 2230-2244.
  • Lang, K. D., Schulte, L. A. & Guntenspergen, G. R. (2009). Windthrow and salvage logging in an old-growth hemlock-northern hardwoods forest. Forest Ecology and Management, 259(1), 56-64.
  • Lee, J., Hopmans, J. W., Rolston, D. E., Baer, S. G. & Six, J. (2009). Determining soil carbon stock changes: simple bulk density corrections fail. Agriculture, Ecosystems & Environment, 134(3-4), 251256. https://doi.org/10.1016/j.agee.2009.07.006
  • Lohmander, P. & Helles, F. (1987). Windthrow probability as a function of stand characteristics and shelter. Scandinavian Journal of Forest Research, 2(1-4), 227-238.
  • López-Ulloa, M., Veldkamp, E. & De Koning, G. H. J. (2005). Soil carbon stabilization in converted tropical pastures and forests depends on soil type. Soil Science Society of America Journal, 69(4), 1110-1117.
  • Majunke, C., Matz, S. & Müller, M. (2008). Sturmschäden in Deutschlands Wäldern von 1920 bis 2007. AFZ-Der Wald, 63, 380-381.
  • Mason, B. & Valinger, E. (2013). Managing forests to reduce storm damage. Chapter 4 b. Gardiner B, Schuck A, Schelhaas MJ, Orazio C, Blennow K, Nicoll B, editors.
  • Mattson, K. G. & Swank, W. T. (1989). Soil and detrital carbon dynamics following forest cutting in the Southern Appalachians. Biology and Fertility of Soils, 7(3), 247-253.
  • Mayer, P., Brang, P., Dobbertin, M., Hallenbarter, D., Renaud, J. P., Walthert, L. & Zimmermann, S. (2005). Forest storm damage is more frequent on acidic soils. Annals of Forest Science, 62(4), 303-311.
  • Mina, M., Bugmann, H., Cordonnier, T., Irauschek, F., Klopcic, M., Pardos, M. & Cailleret, M. (2017). Future ecosystem services from European mountain forests under climate change. Journal of Applied Ecology, 54(2), 389-401.
  • Neumann-Cosel, L., Zimmermann, B., Hall, J. S., van Breugel, M. & Elsenbeer, H. (2011). Soil carbon dynamics under young tropical secondary forests on former pastures—A case study from Panama. Forest Ecology and Management, 261(10), 1625-1633.
  • Oliver, H. R. & Mayhead, G. J. (1974). Wind measurements in a pine forest during a destructive gale. Forestry: An International Journal of Forest Research, 47(2), 185-194.
  • Özyuvacı, N. (1975). Topraklarda Erozyon Eğiliminin Tahmini Açısından Yapılan Bazı Değerlendirmeler. TÜBİTAK V. Bilim Kongresi, Tarım ve Ormancılık Araştırma Grubu Tebliğleri Ormancılık Seksiyonu, 29 Eylül-2 Ekim, 123-134. İzmir.
  • Pang, X. Y., Bao, W. K. & Wu, N. (2011). The effects of clear‐felling subalpine coniferous forests on soil physical and chemical properties in the eastern Tibetan Plateau. Soil Use and Management, 27(2), 213-220.
  • Pawlik, Ł. (2013). The role of trees in the geomorphic system of forested hillslopes—a review. Earth-Science Reviews, 126, 250-265.
  • Pischedda, D. (2004). Technical guide on harvesting and conservation of storm damaged timber. Paris: CTBA
  • Powers, J. S. & Veldkamp, E. (2005). Regional variation in soil carbon and δ 13 C in forests and pastures of northeastern Costa Rica. Biogeochemistry, 72(3), 315-336.
  • Quesada, C. A., Lloyd, J., Schwarz, M., Patiño, S., Baker, T. R., Czimczik, C. & Santos, A. J. B. (2010). Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences, 7(5), 1515-1541.
  • Quine, C. P. (1995a). Forests and wind: management to minimize damage. HMSO For Comm Bull, 114.
  • Quine, C. P. (1995b). Assessing the risk of wind damage to forests: practice and pitfalls. Wind and trees, 379-403, in M. P. Coutts and J. Grace, editors. Wind and trees. Cambridge University Press, Cambridge, UK.
  • Riguelle, S. (2016). Dealing with storm impacts on the forest sector through integrated and systemic approaches at the regional level (Doctoral dissertation, Université de Liège, Gembloux, Belgique.
  • Santos, L. T. D., Magnabosco Marra, D., Trumbore, S., Camargo, P. B. D., Negrón-Juárez, R. I., Lima, A. J. & Higuchi, N. (2016). Windthrows increase soil carbon stocks in a central Amazon forest. Biogeosciences, 13(4), 1299-1308.
  • Sariyildiz, T., Savaci, G. & Kravkaz, I. S. (2015). Effects of tree species, stand age and land-use change on soil carbon and nitrogen stock rates in northwestern Turkey. iForest-Biogeosciences and Forestry, 9(1), 165. https://doi.org/10.3832/ifor1567-008
  • Schaetzl, R. J., Burns, S. F., Johnson, D. L. & Small, T. W. (1989). Tree uprooting: review of impacts on forest ecology. Vegetatio, 79(3), 165-176.
  • Šimkovic, I., Dlapa, P., Šimonovicová, A. & Ziegler, W. (2009). Water Repellency of Mountain Forest Soils in Relation to Impact of the Katabatic Windstorm and Subsequent Management Practices. Polish Journal of Environmental Studies, 18(3).
  • Solantie, R. (1994). Effect of weather and climatological background on snow damage of forests in southern Finland in November 1991. Silva Fenn. 28(3), 203–211.
  • Sommerfeld, A., Senf, C., Buma, B., D’Amato, A. W., Després, T., Díaz-Hormazábal, I. & Seidl, R. (2018). Patterns and drivers of recent disturbances across the temperate forest biome. Nature Communications, 9(1), 1-9.
  • Stephens, E. P. (1956). The uprooting of trees: a forest process. Soil Science Society of America Journal, 20(1), 113-116.
  • von Oheimb, G., Friedel, A., Bertsch, A. & Härdtle, W. (2007). The effects of windthrow on plant species richness in a Central European beech forest. Plant Ecology, 191(1), 47-65. Wild, A. (1993). Soils and the Environment. Cambridge University Press.

The Effects of Windthrow Damage on Soil Properties in Scots Pine, Black Pine and Kazdağı Fir Stands in the Northwest Turkey

Year 2021, , 229 - 243, 31.12.2021
https://doi.org/10.17475/kastorman.1049328

Abstract

Aim of study: The short-term effects of windthrow damage on soil properties were investigated in Kazdağı fir (Abies nordmanniana subsp. equi-trojani), Scots pine (Pinus sylvestris L.) and black pine (Pinus nigra Arnold.) stand in northwest Turkey.
Area of study: The study was carried out in Kastamonu and Sinop regions.
Material and methods: In order to understand the effects of windthrow damage occurred in 2013, soil samples were collected at a depth of 0-30 cm from the disturbed and undisturbed sites in 2018 (5 year later), and analyzed for soil physical and chemical properties.
Main results: The increases in temperature, wind speed and heavy rainfall in the study sites seemed to result in the windthrows. There were significant differences in soil physical and chemical properties among the three tree species, and also between the disturbed and the undisturbed sites.
Highlights: After the windthrows, increased SOC and TN stocks, P and K could be related to the accumulation of organic matter. However, we were not able to identify a single mechanism to explain this observed relationship. Thus, the root-soil interactions of the three tree species should be conclusively examined in future studies in order to define the relationships between soil chemical properties and root features.

References

  • Adams, J. M., Faure, H. F. D. L., Faure-Denard, L., McGlade, J. M. & Woodward, F. I. (1990). Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature, 348(6303), 711-714.
  • Akbaş, B., Akdeniz, N., Aksay, A., Altun, İ.E., Balcı, V., Bilginer, E., Bilgiç, T., Duru, M., Ercan, T., Gedik, İ., Günay, Y., Güven, İ.H., Hakyemez, H.Y., Konak, N., Papak, İ., Pehlivan, Ş., Sevin, M., Şenel, M., Tarhan, N., Turhan, N., Türkecan, A., Ulu, Ü., Uğuz, M.F., Yurtsever, A. ve diğerleri, 2011, 1:1.250.000 ölçekli Türkiye Jeoloji Haritası. Maden Tetkik ve Arama Genel Müdürlüğü Yayını, Ankara-Türkiye.
  • Allen, S. E. (1989). Chemical analysis of ecological materials. Blackwell, Oxford.
  • Batjes, N. H. (1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47(2), 151-163.
  • Beatty, S. W. & Stone, E. L. (1986). The variety of soil microsites created by tree falls. Canadian Journal of Forest Research, 16(3), 539-548.
  • Blake, G. R. & Hartge, K. H. (1986). Bulk density 1. Methods of soil analysis: part 1-physical and mineralogical methods, (methodsofsoilan1), 363-375.
  • Bouget, C. & Duelli, P. (2004). The effects of windthrow on forest insect communities: a literature review. Biological Conservation, 118(3), 281-299.
  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils 1. Agronomy Journal, 54(5), 464-465.
  • Brais, S., Camiré, C. & Paré, D. (1995). Impacts of whole-tree harvesting and winter windrowing on soil pH and base status of clayey sites of northwestern Quebec. Canadian Journal of Forest Research, 25(6), 997-1007.
  • Canham, C. D., Papaik, M. J. & Latty, E. F. (2001). Interspecific variation in susceptibility to windthrow as a function of tree size and storm severity for northern temperate tree species. Canadian Journal of Forest Research, 31(1), 1-10.
  • Coutts, M. P. (1986). Components of tree stability in Sitka spruce on peaty gley soil. Forestry: An International Journal of Forest Research, 59(2), 173-197.
  • Covington, W. W. (1981). Changes in forest floor organic matter and nutrient content following clear cutting in northern hardwoods. Ecology, 62(1), 41-48.
  • Don, A., Bärwolff, M., Kalbitz, K., Andruschkewitsch, R., Jungkunst, H. F. & Schulze, E. D. (2012). No rapid soil carbon loss after a windthrow event in the High Tatra. Forest Ecology and Management, 276, 239-246.
  • Engür, M. O. (2010). Rüzgar devriği hasarlarinda durum değerlendirmesi ve odun üretimi. III. Ulusal Karadeniz Ormancılık Kongresi 20-22 Mayıs 2010, Cilt: III Sayfa: 905-914
  • Engür, M. O. (2014). Odun Üretiminde Çalışanların eğitimi, Ağaç Kesme ve Boylama Operatörü. TC Orman ve Su İşleri Bakanlığı, Orman Genel Müdürlüğü.
  • ESBN (European Soil Bureau Network European Commission) (2005). Soil Atlas of Europe. 128 pp Office for Official Publications of the European Communities, L-2995 Luxembourg.
  • Fraser, A. I. & Gardiner, J. B. H. (1967). Rooting and stability in Sitka spruce (No. 40). London: HM Stationery Office.
  • Gáfriková, J., Hanajík, P., Vykouková, I., Zvarík, M., Ferianc, P., Drahovská, H. & Puškárová, A. (2019). Dystric Cambisol properties at windthrow sites with secondary succession developed after 12 years under different conditions in Tatra National Park. Biologia, 74(9), 1099-1114.
  • Gáfriková, J., Zvarík, M., Hanajík, P., Súlovský, M. & Vykouková, I. (2020). Impact of natural disturbance, forest management and vegetation cover on topsoil biochemical characteristics of Tatra Mts.(Slovakia). Journal of Mountain Science, 17, 1294-1309.
  • Gardiner, B., Blennow, K., Carnus, J. M., Fleischer, P., Ingemarsson, F., Landmann, G. & Peyron, J. L. (2010). Destructive storms in European forests: past and forthcoming impacts. EFIATLANTIC, European Forest Institute, Cestas, France.
  • Gömöryová, E., Střelcová, K., Škvarrnina, J., Bebej, J. & Gömöry, D. (2008). The impact of windthrow and fire disturbances on selected soil properties in the Tatra National Park. Soil and Water Research, 3(Special Issue No. 1), S74-S80.
  • Hartmann, A., Kobler, J., Kralik, M., Dirnböck, T., Humer, F. & Weiler, M. (2016). Model-aided quantification of dissolved carbon and nitrogen release after windthrow disturbance in an Austrian karst system. Biogeosciences, 13(1), 159-174.
  • Hendrickson, O. Q., Chatarpaul, L. & Burgess, D. (1989). Nutrient cycling following whole-tree and conventional harvest in northern mixed forest. Canadian Journal of Forest Research, 19(6), 725-735. Jackson, M. L. (1962). Soil chemical analysis. (Constable and Company, Ltd: London).
  • Karaöz, M. Ö. (1989). Toprakların su ekonomisine ilişkin bazı fiziksel özelliklerinin laboratuvarda belirlenmesi yöntemleri. İstanbul Üniversitesi Orman Fakültesi Dergisi, 39(2), 133-144.
  • Klaus, M., Holsten, A., Hostert, P. & Kropp, J. P. (2011). Integrated methodology to assess windthrow impacts on forest stands under climate change. Forest Ecology and Management, 261(11), 1799-1810.
  • Kooch, Y. (2007). Determination and differentiation of ecosystem units in relation to soil properties in Khanilan forests (Doctoral dissertation, M.Sc. thesis of Forestry). Persian: Publication of Mazandaran University), 130.
  • Kooch, Y., Darabi, S. M. & Hosseini, S. M. (2015). Effects of pits and mounds following windthrow events on soil features and greenhouse gas fluxes in a temperate forest. Pedosphere, 25(6), 853-867.
  • Kooch, Y., Hosseini, S. M., Zaccone, C., Jalilvand, H. & Hojjati, S. M. (2012). Soil organic carbon sequestration as affected by afforestation: the Darab Kola forest (North of Iran) case study. Journal of Environmental Monitoring, 14(9), 2438-2446.
  • Kozlowski, T. T. & Pallardy, S. G. (1997). Chapter 10 - Mineral Nutrition, Editor(s): Theodore T. Kozlowski, Stephen G. Pallardy, Physiology of Woody Plants (Second Edition), Academic Press, 210-236.
  • Kramer, M. G., Hansen, A. J., Taper, M. L. & Kissinger, E. J. (2001). Abiotic controls on long‐term windthrow disturbance and temperate rain forest dynamics in southeast Alaska. Ecology, 82(10), 2749-2768.
  • Kramer, M. G., Sollins, P. & Sletten, R. S. (2004). Soil carbon dynamics across a windthrow disturbance sequence in southeast Alaska. Ecology, 85(8), 2230-2244.
  • Lang, K. D., Schulte, L. A. & Guntenspergen, G. R. (2009). Windthrow and salvage logging in an old-growth hemlock-northern hardwoods forest. Forest Ecology and Management, 259(1), 56-64.
  • Lee, J., Hopmans, J. W., Rolston, D. E., Baer, S. G. & Six, J. (2009). Determining soil carbon stock changes: simple bulk density corrections fail. Agriculture, Ecosystems & Environment, 134(3-4), 251256. https://doi.org/10.1016/j.agee.2009.07.006
  • Lohmander, P. & Helles, F. (1987). Windthrow probability as a function of stand characteristics and shelter. Scandinavian Journal of Forest Research, 2(1-4), 227-238.
  • López-Ulloa, M., Veldkamp, E. & De Koning, G. H. J. (2005). Soil carbon stabilization in converted tropical pastures and forests depends on soil type. Soil Science Society of America Journal, 69(4), 1110-1117.
  • Majunke, C., Matz, S. & Müller, M. (2008). Sturmschäden in Deutschlands Wäldern von 1920 bis 2007. AFZ-Der Wald, 63, 380-381.
  • Mason, B. & Valinger, E. (2013). Managing forests to reduce storm damage. Chapter 4 b. Gardiner B, Schuck A, Schelhaas MJ, Orazio C, Blennow K, Nicoll B, editors.
  • Mattson, K. G. & Swank, W. T. (1989). Soil and detrital carbon dynamics following forest cutting in the Southern Appalachians. Biology and Fertility of Soils, 7(3), 247-253.
  • Mayer, P., Brang, P., Dobbertin, M., Hallenbarter, D., Renaud, J. P., Walthert, L. & Zimmermann, S. (2005). Forest storm damage is more frequent on acidic soils. Annals of Forest Science, 62(4), 303-311.
  • Mina, M., Bugmann, H., Cordonnier, T., Irauschek, F., Klopcic, M., Pardos, M. & Cailleret, M. (2017). Future ecosystem services from European mountain forests under climate change. Journal of Applied Ecology, 54(2), 389-401.
  • Neumann-Cosel, L., Zimmermann, B., Hall, J. S., van Breugel, M. & Elsenbeer, H. (2011). Soil carbon dynamics under young tropical secondary forests on former pastures—A case study from Panama. Forest Ecology and Management, 261(10), 1625-1633.
  • Oliver, H. R. & Mayhead, G. J. (1974). Wind measurements in a pine forest during a destructive gale. Forestry: An International Journal of Forest Research, 47(2), 185-194.
  • Özyuvacı, N. (1975). Topraklarda Erozyon Eğiliminin Tahmini Açısından Yapılan Bazı Değerlendirmeler. TÜBİTAK V. Bilim Kongresi, Tarım ve Ormancılık Araştırma Grubu Tebliğleri Ormancılık Seksiyonu, 29 Eylül-2 Ekim, 123-134. İzmir.
  • Pang, X. Y., Bao, W. K. & Wu, N. (2011). The effects of clear‐felling subalpine coniferous forests on soil physical and chemical properties in the eastern Tibetan Plateau. Soil Use and Management, 27(2), 213-220.
  • Pawlik, Ł. (2013). The role of trees in the geomorphic system of forested hillslopes—a review. Earth-Science Reviews, 126, 250-265.
  • Pischedda, D. (2004). Technical guide on harvesting and conservation of storm damaged timber. Paris: CTBA
  • Powers, J. S. & Veldkamp, E. (2005). Regional variation in soil carbon and δ 13 C in forests and pastures of northeastern Costa Rica. Biogeochemistry, 72(3), 315-336.
  • Quesada, C. A., Lloyd, J., Schwarz, M., Patiño, S., Baker, T. R., Czimczik, C. & Santos, A. J. B. (2010). Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences, 7(5), 1515-1541.
  • Quine, C. P. (1995a). Forests and wind: management to minimize damage. HMSO For Comm Bull, 114.
  • Quine, C. P. (1995b). Assessing the risk of wind damage to forests: practice and pitfalls. Wind and trees, 379-403, in M. P. Coutts and J. Grace, editors. Wind and trees. Cambridge University Press, Cambridge, UK.
  • Riguelle, S. (2016). Dealing with storm impacts on the forest sector through integrated and systemic approaches at the regional level (Doctoral dissertation, Université de Liège, Gembloux, Belgique.
  • Santos, L. T. D., Magnabosco Marra, D., Trumbore, S., Camargo, P. B. D., Negrón-Juárez, R. I., Lima, A. J. & Higuchi, N. (2016). Windthrows increase soil carbon stocks in a central Amazon forest. Biogeosciences, 13(4), 1299-1308.
  • Sariyildiz, T., Savaci, G. & Kravkaz, I. S. (2015). Effects of tree species, stand age and land-use change on soil carbon and nitrogen stock rates in northwestern Turkey. iForest-Biogeosciences and Forestry, 9(1), 165. https://doi.org/10.3832/ifor1567-008
  • Schaetzl, R. J., Burns, S. F., Johnson, D. L. & Small, T. W. (1989). Tree uprooting: review of impacts on forest ecology. Vegetatio, 79(3), 165-176.
  • Šimkovic, I., Dlapa, P., Šimonovicová, A. & Ziegler, W. (2009). Water Repellency of Mountain Forest Soils in Relation to Impact of the Katabatic Windstorm and Subsequent Management Practices. Polish Journal of Environmental Studies, 18(3).
  • Solantie, R. (1994). Effect of weather and climatological background on snow damage of forests in southern Finland in November 1991. Silva Fenn. 28(3), 203–211.
  • Sommerfeld, A., Senf, C., Buma, B., D’Amato, A. W., Després, T., Díaz-Hormazábal, I. & Seidl, R. (2018). Patterns and drivers of recent disturbances across the temperate forest biome. Nature Communications, 9(1), 1-9.
  • Stephens, E. P. (1956). The uprooting of trees: a forest process. Soil Science Society of America Journal, 20(1), 113-116.
  • von Oheimb, G., Friedel, A., Bertsch, A. & Härdtle, W. (2007). The effects of windthrow on plant species richness in a Central European beech forest. Plant Ecology, 191(1), 47-65. Wild, A. (1993). Soils and the Environment. Cambridge University Press.
There are 59 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Gamze Savacı This is me

Temel Sarıyıldız This is me

Sadık Çağlar This is me

Ferhat Kara This is me

Esra Topal This is me

Publication Date December 31, 2021
Published in Issue Year 2021

Cite

APA Savacı, G., Sarıyıldız, T., Çağlar, S., Kara, F., et al. (2021). The Effects of Windthrow Damage on Soil Properties in Scots Pine, Black Pine and Kazdağı Fir Stands in the Northwest Turkey. Kastamonu University Journal of Forestry Faculty, 21(3), 229-243. https://doi.org/10.17475/kastorman.1049328
AMA Savacı G, Sarıyıldız T, Çağlar S, Kara F, Topal E. The Effects of Windthrow Damage on Soil Properties in Scots Pine, Black Pine and Kazdağı Fir Stands in the Northwest Turkey. Kastamonu University Journal of Forestry Faculty. December 2021;21(3):229-243. doi:10.17475/kastorman.1049328
Chicago Savacı, Gamze, Temel Sarıyıldız, Sadık Çağlar, Ferhat Kara, and Esra Topal. “The Effects of Windthrow Damage on Soil Properties in Scots Pine, Black Pine and Kazdağı Fir Stands in the Northwest Turkey”. Kastamonu University Journal of Forestry Faculty 21, no. 3 (December 2021): 229-43. https://doi.org/10.17475/kastorman.1049328.
EndNote Savacı G, Sarıyıldız T, Çağlar S, Kara F, Topal E (December 1, 2021) The Effects of Windthrow Damage on Soil Properties in Scots Pine, Black Pine and Kazdağı Fir Stands in the Northwest Turkey. Kastamonu University Journal of Forestry Faculty 21 3 229–243.
IEEE G. Savacı, T. Sarıyıldız, S. Çağlar, F. Kara, and E. Topal, “The Effects of Windthrow Damage on Soil Properties in Scots Pine, Black Pine and Kazdağı Fir Stands in the Northwest Turkey”, Kastamonu University Journal of Forestry Faculty, vol. 21, no. 3, pp. 229–243, 2021, doi: 10.17475/kastorman.1049328.
ISNAD Savacı, Gamze et al. “The Effects of Windthrow Damage on Soil Properties in Scots Pine, Black Pine and Kazdağı Fir Stands in the Northwest Turkey”. Kastamonu University Journal of Forestry Faculty 21/3 (December 2021), 229-243. https://doi.org/10.17475/kastorman.1049328.
JAMA Savacı G, Sarıyıldız T, Çağlar S, Kara F, Topal E. The Effects of Windthrow Damage on Soil Properties in Scots Pine, Black Pine and Kazdağı Fir Stands in the Northwest Turkey. Kastamonu University Journal of Forestry Faculty. 2021;21:229–243.
MLA Savacı, Gamze et al. “The Effects of Windthrow Damage on Soil Properties in Scots Pine, Black Pine and Kazdağı Fir Stands in the Northwest Turkey”. Kastamonu University Journal of Forestry Faculty, vol. 21, no. 3, 2021, pp. 229-43, doi:10.17475/kastorman.1049328.
Vancouver Savacı G, Sarıyıldız T, Çağlar S, Kara F, Topal E. The Effects of Windthrow Damage on Soil Properties in Scots Pine, Black Pine and Kazdağı Fir Stands in the Northwest Turkey. Kastamonu University Journal of Forestry Faculty. 2021;21(3):229-43.

14178  14179       14165           14166           14167            14168