Research Article
BibTex RIS Cite

Estimating True Species Richness from Braun Blanquet Scale

Year 2021, , 306 - 314, 31.12.2021
https://doi.org/10.17475/kastorman.1049968

Abstract

Aim of study: The goal of the study was to estimate true species richness from Braun Blanquet (BB) scale data.
Area of study: Yazılı Canyon Nature Park (YCNP) located in the Mediterranean Region of Turkey.
Material and methods: A bias-corrected approach was adapted based on the Good-Turning frequency formula to estimate true species richness (S_est ) for 9 vegetation plots under three scenarios (Rare species are singletons: with 1/1 probability 〖(Sc〗_1), with 1/2 probability (〖Sc〗_2), with 1/3 probability 〖(Sc〗_3)).
Main results: The results indicate that with increasing uncertainty about the number of singletons, the difference between expected species richness and observed species richness decreases. To estimate the species richness of the plots taken from YCNP, scenario III (〖Sc〗_3 ) seems to be the best option due to existing maximum uncertainty concerning the number of singletons.
Highlights: All the proposed bias-corrected estimators have been developed by considering the abundance or the incidence-based data except for S_est. For employing S_est, all the data consists of the number of singletons (f_1 ) and super doubletons (f_(2+) ). f_1 and f_(2+) can be obtained from BB scale because its "r" code usually corresponds to f_1. However, some scientists prefer to use "r" in description of a few species. That causes an uncertainty about f_1. Using S_est, this study offers an approach and a spreadsheet program to estimate true species richness even though the number of singletons is uncertain.
Keywords:

References

  • Camiz, S., Torres, P. & Pillar, V. D. (2017). Recoding and multidimensional analyses of vegetation data: a comparison. Community Ecology, 18(3), 260-279.
  • Campbell, B. M. (1974). Phytosociological study of some forest patches on Table Mountain. University of Cape Town Honours project.
  • Çekim, H. O. & Kadılar, C. (2020). In-type estimators for the population variance in stratified random sampling. Communications in Statistics-Simulation and Computation, 49(7), 1665-1677.
  • Chao, A. (1987). Estimating the population size for capture-recapture data with unequal catchability. Biometrics, 783-791.
  • Chao, A. & Jost, L. (2012). Coverage‐based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology, 93(12), 2533-2547.
  • Chao, A. & Chiu, C. (2016). Nonparametric Estimation and Comparison of Species Richness, In: eLS. Wiley Online Referance in the Life Sciences. John Wiley and Sons, DOI: 10.1002/9780470015902.a0026329.
  • Chao, A., Colwell, R. K., Chiu, C. H. & Townsend, D. (2017). Seen once or more than once: Applying Good–Turing theory to estimate species richness using only unique observations and a species list. Methods in Ecology and Evolution, 8(10), 1221-1232.
  • Chao, A., Hsieh, T. C., Chazdon, R. L., Colwell, R. K. & Gotelli, N. J. (2015). Unveiling the species‐rank abundance distribution by generalizing the Good‐Turing sample coverage theory. Ecology, 96(5), 1189-1201.
  • Chmura, D. & Salachna, A. (2016). The errors in visual estimation of plants cover in the context of education of phytosociology. Chemistry-Didactics-Ecology-Metrology, 21(1-2), 75-82.
  • Eren, M. I., Chao, A., Hwang, W. H. & Colwell, R. K. (2012). Estimating the richness of a population when the maximum number of classes is fixed: a nonparametric solution to an archaeological problem. PLoS One, 7(5), e34179.
  • Good, I. J. (1953). The population frequencies of species and the estimation of population parameters. Biometrika, 40(3-4), 237-264.
  • Good, I. J. (2000). Turing’s anticipation of empirical Bayes in connection with the cryptanalysis of the naval Enigma. Journal of Statistical Computation and Simulation, 66(2), 101-111.
  • Gotelli, N. J. & Chao, A. (2013). Measuring and estimating species richness, species diversity, and biotic similarity from sampling data. Encyclopedia of biodiversity, Elsevier, 5, 195-211.
  • Guarino, R., Willner, W., Pignatti, S., Attorre, F. & J. Loidi, J. (2018). Spatio-temporal variations in the application of the Braun-Blanquet approuch in Europe. Phytocoenologia, 48(2), 239-250.
  • Kadılar, C. & Çingi, H. (2007). Improvement in variance estimation in simple random sampling. Communications in Statistics-Theory and Methods, 36(11), 2075-2081.
  • Magurran, A. E. (2004). Measuring biological diversity. Blackwell Publishing: Oxford. 8, 256, ISBN 0-632-05633-9.
  • Miller, A. L., Diez, J. M., Sullivan, J. J., Wangen, S. R., Wiser, S. K., Meffin, R. & Duncan, R. P. (2014). Quantifying invasion resistance: the use of recruitment functions to control for propagule pressure. Ecology, 95(4), 920-929.
  • Özel, G., Çingi, H. & Oğuz, M. (2014). Separate ratio estimators for the population variance in stratified random sampling. Communications in Statistics-Theory and Methods, 43(22), 4766-4779.
  • Özkan, K. (2016). Application of information theory for an entropic gradient of ecological sites. Entropy, 18(10), 340.
  • Pärtel, M., Szava-Kovats, R. & Zobel, M. (2011). Dark diversity: shedding light on absent species. Trends in ecology & evolution, 26(3), 124-128.
  • Peet, R. K., Wentworth, T. R. & White, P. S. (1998). A flexible, multipurpose method for recording vegetation composition and structure. Castanea, 262-274.
  • Poore, M. E. D. (1955). The use of phytosociological methods in ecological investigations: I. The Braun-Blanquet system. Journal of Ecology, 43(1), 226-244.
  • Prieditis, N. (1997). Vegetation of wetland forests in Latvia: A synopsis. In Annales Botanici Fennici, Finnish Zoological and Botanical Publishing Board, 34, 91-108.
  • Pyšek, P., Jarošík, V., Kropáč, Z., Chytrý, M., Wild, J. & Tichý, L. (2005). Effects of abiotic factors on species richness and cover in Central European weed communities. Agriculture, Ecosystem and Environmental, 109, pp. 1-8.
  • Sarmah, C. K. (2017). Chao, jackknife and bootstrap estimators of species richness. IJAMAA, 12 (1), 7-15.
  • Shen, T. J. & He, F. (2008). An incidence‐based richness estimator for quadrats sampled without replacement. Ecology, 89(7), 2052-2060.
  • Smith, E. P. & Van Belle, G. (1984). Nonparametric estimation of species richness. Biometrics, 119-129.
  • Vahdati, F., Mehrvarz, S. S., Naqinezhad, A. & Gholizadeh, H. (2014). How plant diversity features change across ecological species group? A case study of a temperate deciduous forest in northern Iran. Biodiversitas, 15(1), 31-38.
  • Van der Maarel, E. (2007). Transformation of cover‐abundance values for appropriate numerical treatment‐Alternatives to the proposals by Podani. Journal of Vegetation Science, 18(5), 767-770.
  • Werger, M. J. A. (1974). On concepts and techniques applied in the Ziirich-Montpellier method of vegetation survey. Bothalia, 11(3), 309-323.
  • Westhoff, V. & Van der Maarel, E. (1973). The Braun-Blanquet approach. In Classification of Plant Communities: Whittaker, R.H., Ed: Springer: Hague, 617-726, Netherlands.

Braun Blanquet Skalasından Doğru Tür Zenginliğinin Kestirimi

Year 2021, , 306 - 314, 31.12.2021
https://doi.org/10.17475/kastorman.1049968

Abstract

Çalışmanın amacı: Bu çalışma Braun Blanquet (BB) skala verileri kullanarak doğru tür zenginliğinin nasıl kestirilebileceğini göstermek için gerçekleştirilmiştir.
Çalışma alanı: Türkiye’nin Akdeniz Bölgesi’nde bulunan Yazılı Kanyon Tabiat Parkı (YKTP)’dır.
Materyal ve yöntem: Çalışma materyali Braun Blanquet (BB) skalasına göre 9 örnek alanda kaydı yapılmış bitki verilerinden oluşmaktadır. Araştırmada tür zenginliğinin kestirimi için, üç farklı senaryoya göre (nadir türler; tek bireyli türlerdir (〖Sc〗_1 ), 1/2 oranında tek bireyli türlerdir (〖Sc〗_2 ), 1/3 oranında tek bireyli türlerdir (〖Sc〗_3 )) Chao ve ark. (2017) tarafından geliştirilen Good-Turing frekans formülüne dayalı sapma-düzeltme yaklaşımı (S_est ) kullanılmıştır.
Temel sonuçlar: Elde edilen sonuçlara göre, tek bireyli tür sayıları ile ilgili belirsizlik arttıkça kestirilen tür sayısı ile gözlenen tür sayısı arasındaki fark azalmaktadır. YKTP’den alınan örnek alanlarda tek bireyli tür sayıları ile ilgili maksimum belirsizlik söz konusudur. Bu yüzden tür zenginliğini kestirmek için en ideal senaryo üçüncü senaryodur (〖Sc〗_3 ).
Araştırma vurguları: Negatif sapmayı azaltmak için birçok kestirici önerilmiştir. S_est hariç, önerilen diğer bütün kestiriciler bolluk veya rastlanma sıklığı verisini dikkate alınarak geliştirilmiştir. S_est’in kullanılması için kullanılacak veri tek bireyli türlerin sayısı (f_1 ) ile iki ve daha fazla bireye sahip türlerin sayısından (f_(2+) ) ibarettir. f_1 ve f_(2+) BB skalası’ndan elde edilebilir. Zira BB skalasında "r" genellikle tek bireyli türler için kullanılır. Bununla birlikte bazı bilim insanları "r" kodunu “bir veya birkaç tür” tanımı için kullanmaktadır. Bu durum f_1 değeri ile ilgili belirsizliğe sebep olmaktadır. Bu çalışma tek bireyli tür sayıları ile ilgili bir belirsizlik olsa bile, S_est üstünden tür zenginlik kestirimini sağlayabilecek bir yaklaşım ve excel programı sunmaktadır.

References

  • Camiz, S., Torres, P. & Pillar, V. D. (2017). Recoding and multidimensional analyses of vegetation data: a comparison. Community Ecology, 18(3), 260-279.
  • Campbell, B. M. (1974). Phytosociological study of some forest patches on Table Mountain. University of Cape Town Honours project.
  • Çekim, H. O. & Kadılar, C. (2020). In-type estimators for the population variance in stratified random sampling. Communications in Statistics-Simulation and Computation, 49(7), 1665-1677.
  • Chao, A. (1987). Estimating the population size for capture-recapture data with unequal catchability. Biometrics, 783-791.
  • Chao, A. & Jost, L. (2012). Coverage‐based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology, 93(12), 2533-2547.
  • Chao, A. & Chiu, C. (2016). Nonparametric Estimation and Comparison of Species Richness, In: eLS. Wiley Online Referance in the Life Sciences. John Wiley and Sons, DOI: 10.1002/9780470015902.a0026329.
  • Chao, A., Colwell, R. K., Chiu, C. H. & Townsend, D. (2017). Seen once or more than once: Applying Good–Turing theory to estimate species richness using only unique observations and a species list. Methods in Ecology and Evolution, 8(10), 1221-1232.
  • Chao, A., Hsieh, T. C., Chazdon, R. L., Colwell, R. K. & Gotelli, N. J. (2015). Unveiling the species‐rank abundance distribution by generalizing the Good‐Turing sample coverage theory. Ecology, 96(5), 1189-1201.
  • Chmura, D. & Salachna, A. (2016). The errors in visual estimation of plants cover in the context of education of phytosociology. Chemistry-Didactics-Ecology-Metrology, 21(1-2), 75-82.
  • Eren, M. I., Chao, A., Hwang, W. H. & Colwell, R. K. (2012). Estimating the richness of a population when the maximum number of classes is fixed: a nonparametric solution to an archaeological problem. PLoS One, 7(5), e34179.
  • Good, I. J. (1953). The population frequencies of species and the estimation of population parameters. Biometrika, 40(3-4), 237-264.
  • Good, I. J. (2000). Turing’s anticipation of empirical Bayes in connection with the cryptanalysis of the naval Enigma. Journal of Statistical Computation and Simulation, 66(2), 101-111.
  • Gotelli, N. J. & Chao, A. (2013). Measuring and estimating species richness, species diversity, and biotic similarity from sampling data. Encyclopedia of biodiversity, Elsevier, 5, 195-211.
  • Guarino, R., Willner, W., Pignatti, S., Attorre, F. & J. Loidi, J. (2018). Spatio-temporal variations in the application of the Braun-Blanquet approuch in Europe. Phytocoenologia, 48(2), 239-250.
  • Kadılar, C. & Çingi, H. (2007). Improvement in variance estimation in simple random sampling. Communications in Statistics-Theory and Methods, 36(11), 2075-2081.
  • Magurran, A. E. (2004). Measuring biological diversity. Blackwell Publishing: Oxford. 8, 256, ISBN 0-632-05633-9.
  • Miller, A. L., Diez, J. M., Sullivan, J. J., Wangen, S. R., Wiser, S. K., Meffin, R. & Duncan, R. P. (2014). Quantifying invasion resistance: the use of recruitment functions to control for propagule pressure. Ecology, 95(4), 920-929.
  • Özel, G., Çingi, H. & Oğuz, M. (2014). Separate ratio estimators for the population variance in stratified random sampling. Communications in Statistics-Theory and Methods, 43(22), 4766-4779.
  • Özkan, K. (2016). Application of information theory for an entropic gradient of ecological sites. Entropy, 18(10), 340.
  • Pärtel, M., Szava-Kovats, R. & Zobel, M. (2011). Dark diversity: shedding light on absent species. Trends in ecology & evolution, 26(3), 124-128.
  • Peet, R. K., Wentworth, T. R. & White, P. S. (1998). A flexible, multipurpose method for recording vegetation composition and structure. Castanea, 262-274.
  • Poore, M. E. D. (1955). The use of phytosociological methods in ecological investigations: I. The Braun-Blanquet system. Journal of Ecology, 43(1), 226-244.
  • Prieditis, N. (1997). Vegetation of wetland forests in Latvia: A synopsis. In Annales Botanici Fennici, Finnish Zoological and Botanical Publishing Board, 34, 91-108.
  • Pyšek, P., Jarošík, V., Kropáč, Z., Chytrý, M., Wild, J. & Tichý, L. (2005). Effects of abiotic factors on species richness and cover in Central European weed communities. Agriculture, Ecosystem and Environmental, 109, pp. 1-8.
  • Sarmah, C. K. (2017). Chao, jackknife and bootstrap estimators of species richness. IJAMAA, 12 (1), 7-15.
  • Shen, T. J. & He, F. (2008). An incidence‐based richness estimator for quadrats sampled without replacement. Ecology, 89(7), 2052-2060.
  • Smith, E. P. & Van Belle, G. (1984). Nonparametric estimation of species richness. Biometrics, 119-129.
  • Vahdati, F., Mehrvarz, S. S., Naqinezhad, A. & Gholizadeh, H. (2014). How plant diversity features change across ecological species group? A case study of a temperate deciduous forest in northern Iran. Biodiversitas, 15(1), 31-38.
  • Van der Maarel, E. (2007). Transformation of cover‐abundance values for appropriate numerical treatment‐Alternatives to the proposals by Podani. Journal of Vegetation Science, 18(5), 767-770.
  • Werger, M. J. A. (1974). On concepts and techniques applied in the Ziirich-Montpellier method of vegetation survey. Bothalia, 11(3), 309-323.
  • Westhoff, V. & Van der Maarel, E. (1973). The Braun-Blanquet approach. In Classification of Plant Communities: Whittaker, R.H., Ed: Springer: Hague, 617-726, Netherlands.
There are 31 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Kürşad Özkan This is me

Publication Date December 31, 2021
Published in Issue Year 2021

Cite

APA Özkan, K. (2021). Estimating True Species Richness from Braun Blanquet Scale. Kastamonu University Journal of Forestry Faculty, 21(3), 306-314. https://doi.org/10.17475/kastorman.1049968
AMA Özkan K. Estimating True Species Richness from Braun Blanquet Scale. Kastamonu University Journal of Forestry Faculty. December 2021;21(3):306-314. doi:10.17475/kastorman.1049968
Chicago Özkan, Kürşad. “Estimating True Species Richness from Braun Blanquet Scale”. Kastamonu University Journal of Forestry Faculty 21, no. 3 (December 2021): 306-14. https://doi.org/10.17475/kastorman.1049968.
EndNote Özkan K (December 1, 2021) Estimating True Species Richness from Braun Blanquet Scale. Kastamonu University Journal of Forestry Faculty 21 3 306–314.
IEEE K. Özkan, “Estimating True Species Richness from Braun Blanquet Scale”, Kastamonu University Journal of Forestry Faculty, vol. 21, no. 3, pp. 306–314, 2021, doi: 10.17475/kastorman.1049968.
ISNAD Özkan, Kürşad. “Estimating True Species Richness from Braun Blanquet Scale”. Kastamonu University Journal of Forestry Faculty 21/3 (December 2021), 306-314. https://doi.org/10.17475/kastorman.1049968.
JAMA Özkan K. Estimating True Species Richness from Braun Blanquet Scale. Kastamonu University Journal of Forestry Faculty. 2021;21:306–314.
MLA Özkan, Kürşad. “Estimating True Species Richness from Braun Blanquet Scale”. Kastamonu University Journal of Forestry Faculty, vol. 21, no. 3, 2021, pp. 306-14, doi:10.17475/kastorman.1049968.
Vancouver Özkan K. Estimating True Species Richness from Braun Blanquet Scale. Kastamonu University Journal of Forestry Faculty. 2021;21(3):306-14.

14178  14179       14165           14166           14167            14168