Research Article
BibTex RIS Cite

Masif odun ve kontrplakların eğilme testinde gerinim dağılımlarının dijital görüntü korelasyonu ile belirlenmesi

Year 2017, , 354 - 361, 28.09.2017
https://doi.org/10.17475/kastorman.328188

Abstract

Özet

Çalışmanın amacı: Bu çalışmada, kayın (Fagus
orientalis
L.), meşe (Quecus robur)
ve kayın kaplamalardan elde edilen kontrplakların eğilme testinde yer
değiştirme ve gerinim alanları dijital görüntü korelasyonu yöntemiyle karşılaştırılması
amaçlanmıştır.

Materyal ve Yöntem: Ahşap malzeme olarak kayın (Fagus
orientalis
L.), meşe (Quercus robur)
ve kayın kaplamalardan elde edilen kontrplaklar kullanılmıştır. Daha sonra,
test numunelerinin yoğunlukları ve eğilme dirençleri hesaplanmıştır.  Dijital
görüntü korelasyon analizi, bir numunenin yüzeydeki yer değiştirmeyi çözmek
için kullanıldı. Malzemenin deformasyonu numune yüzeyindeki işaretlerin yer
değiştirmesini izleyerek elde edilebilir.

Sonuçlar: Yapılan çalışmalar sonucu en yüksek statik eğilme direnci kayın malzemede,
en düşük ise kontrplakda bulunmuştur. Dijital görüntü korelasyon analizi masif
malzeme ve kontrplak da eğilme davranışını anlamamıza yardımcı olan gerilme ve
yer değiştirmenin tespitinde etkili bir tekniktir.









Araştırma vurguları: Bu araştırmanın sonuçları, Dijital görüntü korelasyonu tekniğinin farklı
odun kompleks yapılarındaki tam alan deformasyonlarını ölçebildiğini
göstermektedir. Ahşap mühendisliği alanında sınırlı DIC çalışması nedeniyle
gelecekte daha kapsamlı çalışmalara ihtiyaç vardır.

References

  • Blaber, J., Adair, B., Antoniou, A. 2015. Antoniou, Ncorr: Open-Source 2D Digital Image Correlation Matlab Software, Experimantal Mechanics, 55, 1105-1122. Borri A., Corradi M., Grazini, A. 2005. A method for flexural reinforcement of old wood beams with CFRP materials. Composites Part B: Engineering, 36 (2), 143-153.
  • Ghani, A.F., A.B., Ali, M.B., DharMalingam, S., Mahmud, J. 2016. Digital image correlation (DIC) technique in measuring strain using opensource platform ncorr. Journal of Advanced Research in Applied Mechanics, 26, 1, 10-21.
  • Glass S V., Zelinka S L. 2010. Moisture Relations and Physical Properties of Wood, Chapter 4, (Editor: Ross R J., Wood Handbook, Wood as an Engineering Material) Forest Products Laboratory, United States Department of Agriculture Forest Service, Madison, Wisconsin.
  • Harilal, R. 2014. Adaptation of open source 2D DIC software Ncorr for solid mechanics applications. 9th International Symposium on Advanced Science and Technology in Experimental Mechanics, (1-6 November, 2014), New Delhi, India.
  • Jeong, G.Y., Zink-Sharp, A., Hindman, D.P. 2009. Tensile properties of earlywood and latewood from loblolly pine (Pinus taeda) using digital image correlation. Wood and Fiber Science, 41 (1), 51-63.
  • Kasal, A., Hasan, E.F.E., Dizel, T. 2010. Determination of the bending strength and modulus of elasticity of solid wood and laminated veneer lumber. Journal of Polytechnic, 13, 3, 183-190.
  • Kelley S S., Rials T G., Snell R., Groom L H., Sluiter A. 2004. Use of near infrared spectroscopy to measure the chemical and mechanical properties of solid wood. Wood Science and Technology, 38 (4), 257-276.
  • Kwon O.H., Kim, S.T., Kang, J.W. 2013. A study of the strain measurement for Al6061-T6 tensile specimen using the Digital Image Correlation, Journal of the Korean Society of Safety, 28, 4, 26-32.
  • La Rosa, G., Clienti, C., Garrano, A.M.C. 2016. The use of digital image correlation to correct the thermoelastic curves in static tests. Procedia Structural Integrity, 2, 2140-2147.
  • Tasdemir, B. 2015. Determınatıon of stress ıntensıty factor usıng dıgıtal ımage correlatıon method. Matter, 2, 1, .20-24.
  • Matsumoto, R., Kubota, M., Miyazaki, N. 2013. Development of deformation measurement system consisting of high-speed camera and digital ımage correlation, and ıts application to the measurement of large ınhomogeneous deformations around the crack tip experimental techniques. Experimental Techniques, 1-10.
  • Nopens, I., Foubert, I., Graef, V.D., Laere D.V., Dewettinck K., Vanrolleghem P. 2008. Automated image analysis tool for migration fat bloom evaluation of chocolate coated food products. Journal of Food Science and Technology, 4,1884–1891.
  • Nguyen, V.T., Kwon, S.J., Kwon, O.H., Kim, Y.S. 2017. Mechanical properties identification of sheet metals by 2D-digital image correlation method. Procedia Engineering, 184, 381-389.
  • Thalmann, C., Freise, J., Heitland, W., Bacher, S. 2003. Effects of defoliation by horse chestnut leafminer (Cameraria ohridella) on reproduction in Aesculus hippocastanum. Trees, 17, 383–388.
  • Pan, B., Qian, K., Huimin, X., Asundi, A. 2009. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Measurement Science and Technology, 20, 6.
  • TS 2470, 1976. Wood-sampling methods and general requirements for physical and mechanical tests, 1976, Ankara.
  • TS 2474, 1976. Wood-determination of ultimate strength in static bending, Ankara.
  • URL1,2017http://www.ncorr.com/index.php/applications.
  • Zor M., Sozen E., Bardak T. 2016. Mechanical Performances of Laminated Wood and Determination of Deformation in the Bending Test with the Aid of Image Analysis Method. Journal of Bartın Faculty of Forestry, 18 (2): 126-136 (in Turkish).

Determination of Strain Distributions of Solid Wood and Plywood in Bending test by Digital Image Correlation

Year 2017, , 354 - 361, 28.09.2017
https://doi.org/10.17475/kastorman.328188

Abstract

Abstract

Aim of study: In this study, it is aimed to compare displacement
and strain fields of the plywood obtained from fagus coverings, oak (Quecus robur) and beech (Fagus orientalis L.)  by digital image correlation method.

Material and
Methods
: As wood material, beech (Fagus orientalis L.), oak (Quecus
robur)
and plywood obtained from fagus veneers were used. Then the densities
and modulus of ruptures of the test specimens were calculated. Digital Image
Correlation Analysis (DIC) was developed to resolve the displacement on the
surface of a specimen. Deformation of the material can be achieved by tracking
the displacement of markers on the sample surface.

Main results: The results of the studies were found to be the
highest static bending strenght in beech material and the lowest in plywood.
The DIC technique is effective in detecting the displacement and strain, which
helps to understand the bending behavior of solid wood and plywood









Research highlights: The
results from this research indicate that the DIC technique is capable of
measuring full-field deformations in different wood complex structures.  Due to limited DIC study in the field of wood
engineering, there is a need for more extensive work in the future

References

  • Blaber, J., Adair, B., Antoniou, A. 2015. Antoniou, Ncorr: Open-Source 2D Digital Image Correlation Matlab Software, Experimantal Mechanics, 55, 1105-1122. Borri A., Corradi M., Grazini, A. 2005. A method for flexural reinforcement of old wood beams with CFRP materials. Composites Part B: Engineering, 36 (2), 143-153.
  • Ghani, A.F., A.B., Ali, M.B., DharMalingam, S., Mahmud, J. 2016. Digital image correlation (DIC) technique in measuring strain using opensource platform ncorr. Journal of Advanced Research in Applied Mechanics, 26, 1, 10-21.
  • Glass S V., Zelinka S L. 2010. Moisture Relations and Physical Properties of Wood, Chapter 4, (Editor: Ross R J., Wood Handbook, Wood as an Engineering Material) Forest Products Laboratory, United States Department of Agriculture Forest Service, Madison, Wisconsin.
  • Harilal, R. 2014. Adaptation of open source 2D DIC software Ncorr for solid mechanics applications. 9th International Symposium on Advanced Science and Technology in Experimental Mechanics, (1-6 November, 2014), New Delhi, India.
  • Jeong, G.Y., Zink-Sharp, A., Hindman, D.P. 2009. Tensile properties of earlywood and latewood from loblolly pine (Pinus taeda) using digital image correlation. Wood and Fiber Science, 41 (1), 51-63.
  • Kasal, A., Hasan, E.F.E., Dizel, T. 2010. Determination of the bending strength and modulus of elasticity of solid wood and laminated veneer lumber. Journal of Polytechnic, 13, 3, 183-190.
  • Kelley S S., Rials T G., Snell R., Groom L H., Sluiter A. 2004. Use of near infrared spectroscopy to measure the chemical and mechanical properties of solid wood. Wood Science and Technology, 38 (4), 257-276.
  • Kwon O.H., Kim, S.T., Kang, J.W. 2013. A study of the strain measurement for Al6061-T6 tensile specimen using the Digital Image Correlation, Journal of the Korean Society of Safety, 28, 4, 26-32.
  • La Rosa, G., Clienti, C., Garrano, A.M.C. 2016. The use of digital image correlation to correct the thermoelastic curves in static tests. Procedia Structural Integrity, 2, 2140-2147.
  • Tasdemir, B. 2015. Determınatıon of stress ıntensıty factor usıng dıgıtal ımage correlatıon method. Matter, 2, 1, .20-24.
  • Matsumoto, R., Kubota, M., Miyazaki, N. 2013. Development of deformation measurement system consisting of high-speed camera and digital ımage correlation, and ıts application to the measurement of large ınhomogeneous deformations around the crack tip experimental techniques. Experimental Techniques, 1-10.
  • Nopens, I., Foubert, I., Graef, V.D., Laere D.V., Dewettinck K., Vanrolleghem P. 2008. Automated image analysis tool for migration fat bloom evaluation of chocolate coated food products. Journal of Food Science and Technology, 4,1884–1891.
  • Nguyen, V.T., Kwon, S.J., Kwon, O.H., Kim, Y.S. 2017. Mechanical properties identification of sheet metals by 2D-digital image correlation method. Procedia Engineering, 184, 381-389.
  • Thalmann, C., Freise, J., Heitland, W., Bacher, S. 2003. Effects of defoliation by horse chestnut leafminer (Cameraria ohridella) on reproduction in Aesculus hippocastanum. Trees, 17, 383–388.
  • Pan, B., Qian, K., Huimin, X., Asundi, A. 2009. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Measurement Science and Technology, 20, 6.
  • TS 2470, 1976. Wood-sampling methods and general requirements for physical and mechanical tests, 1976, Ankara.
  • TS 2474, 1976. Wood-determination of ultimate strength in static bending, Ankara.
  • URL1,2017http://www.ncorr.com/index.php/applications.
  • Zor M., Sozen E., Bardak T. 2016. Mechanical Performances of Laminated Wood and Determination of Deformation in the Bending Test with the Aid of Image Analysis Method. Journal of Bartın Faculty of Forestry, 18 (2): 126-136 (in Turkish).
There are 19 citations in total.

Details

Journal Section Articles
Authors

TİMUÇİN Bardak

Selahattin Bardak

Eser Sözen This is me

Publication Date September 28, 2017
Published in Issue Year 2017

Cite

APA Bardak, T., Bardak, S., & Sözen, E. (2017). Determination of Strain Distributions of Solid Wood and Plywood in Bending test by Digital Image Correlation. Kastamonu University Journal of Forestry Faculty, 17(2), 354-361. https://doi.org/10.17475/kastorman.328188
AMA Bardak T, Bardak S, Sözen E. Determination of Strain Distributions of Solid Wood and Plywood in Bending test by Digital Image Correlation. Kastamonu University Journal of Forestry Faculty. September 2017;17(2):354-361. doi:10.17475/kastorman.328188
Chicago Bardak, TİMUÇİN, Selahattin Bardak, and Eser Sözen. “Determination of Strain Distributions of Solid Wood and Plywood in Bending Test by Digital Image Correlation”. Kastamonu University Journal of Forestry Faculty 17, no. 2 (September 2017): 354-61. https://doi.org/10.17475/kastorman.328188.
EndNote Bardak T, Bardak S, Sözen E (September 1, 2017) Determination of Strain Distributions of Solid Wood and Plywood in Bending test by Digital Image Correlation. Kastamonu University Journal of Forestry Faculty 17 2 354–361.
IEEE T. Bardak, S. Bardak, and E. Sözen, “Determination of Strain Distributions of Solid Wood and Plywood in Bending test by Digital Image Correlation”, Kastamonu University Journal of Forestry Faculty, vol. 17, no. 2, pp. 354–361, 2017, doi: 10.17475/kastorman.328188.
ISNAD Bardak, TİMUÇİN et al. “Determination of Strain Distributions of Solid Wood and Plywood in Bending Test by Digital Image Correlation”. Kastamonu University Journal of Forestry Faculty 17/2 (September 2017), 354-361. https://doi.org/10.17475/kastorman.328188.
JAMA Bardak T, Bardak S, Sözen E. Determination of Strain Distributions of Solid Wood and Plywood in Bending test by Digital Image Correlation. Kastamonu University Journal of Forestry Faculty. 2017;17:354–361.
MLA Bardak, TİMUÇİN et al. “Determination of Strain Distributions of Solid Wood and Plywood in Bending Test by Digital Image Correlation”. Kastamonu University Journal of Forestry Faculty, vol. 17, no. 2, 2017, pp. 354-61, doi:10.17475/kastorman.328188.
Vancouver Bardak T, Bardak S, Sözen E. Determination of Strain Distributions of Solid Wood and Plywood in Bending test by Digital Image Correlation. Kastamonu University Journal of Forestry Faculty. 2017;17(2):354-61.

14178  14179       14165           14166           14167            14168