Araştırma Makalesi
BibTex RIS Kaynak Göster

Borik Asit ile Emprenye Edilmiş Karaçam Odununun Radyasyon Zırhlama Özelliklerinin İncelenmesi

Yıl 2020, Cilt: 20 Sayı: 2, 200 - 207, 29.09.2020
https://doi.org/10.17475/kastorman.801770

Öz

Çalışmanın amacı: Bu çalışma, emprenye edilmiş karaçam (Pinus nigra Arnold subsp. pallasiana) odununun radyasyon zırhlama özelliklerini lineer zayıflatma katsayısı, kütle zayıflatma katsayısı, yarı değer ve onuncu değer katman kalınlığını 5 keV'den 1000 keV'ye kadar farklı gama enerjilerinde ölçerek araştırmaktadır.
Materyal ve yöntem: Emprenye edilmiş ahşap malzemenin doğrusal zayıflatma katsayısı (1/cm), kütle zayıflatma katsayısı (cm2/g), yarı değer ve onuncu değer katman kalınlığı değerleri WinXCOM tabanlı Phy-X/PSD yazılımı kullanılarak 5 ile 1000 keV enerji aralığında hesaplanarak beton ile karşılaştırılmıştır.
Temel sonuçlar: Emprenyeli ahşabın lineer zayıflatma katsayısı ile kütle zayıflatma katsayısının foton enerjisi arttıkça azaldığı bulunmuştur. Ancak, emprenyeli ahşabın yarı değer kalınlığı ve onuncu değer kalınlığı foton enerjisi arttıkça artmıştır. Sonuç olarak, ahşabın radyasyon kalkanı özelliklerinin borik asit emprenyesi ile arttığı tespit edilmiştir.
Araştırma vurguları: Emprenyeli odunun radyasyonu zırhlama özellikleri, yüksek yoğunluğu ve bor elementi içeren kimyasal bileşimi nedeniyle çam odunundan daha yüksek çıkmıştır.

Kaynakça

  • Agar, O., Tekin, H. O., Sayyed, M. I., Korkmaz, M. E., Culfa, O., & Ertugay, C. (2019). Experimental investigation of photon attenuation behaviors for concretes including natural perlite mineral. Results in Physics, 12 (November 2018), 237-243. https://doi.org/10.1016/j.rinp.2018.11.053
  • Akkaş, A. (2016). Determination of the tenth and half value layer thickness of concretes with different densities. Acta Physica Polonica A, 129(4),770-772. https://doi.org/10.12693/APhysPolA.129.770
  • Akman, F., Turan, V., Sayyed, M. I., Akdemir, F., Kaçal, M. R., Durak, R., & Zaid, M. H. M. (2019). Comprehensive study on evaluation of shielding parameters of selected soils by gamma and X-rays transmission in the range 13.94-88.04 keV using WinXCom and FFAST programs. Results in Physics, 15 (August), 102751.https://doi.org/10.1016/j.rinp.2019.102751
  • Aşkın, A., & Dal, M. (2019). Investigation of The Gamma Ray Shielding Behaviour of (90-x) TeO2—xMoO3—10ZnO Glass System Using Geant4 Simulation Code and WinXCOM Database. Cumhuriyet Sci. J., 40(1), 197–203. https://doi.org/http://dx.doi.org/10.17776/csj.356185
  • Aygün, B. (2020). High alloyed new stainless steel shielding material for gamma and fast neutron radiation. Nuclear Engineering and Technology, 52(3), 647-653. https://doi.org/10.1016/j.net.2019.08.017
  • Bradley, D. A., Tajuddin, A. A., Sudin, C. W. A. C. W., & Bauk, S. (1991). Photon attenuation studies on tropical hardwoods. International Journal of Radiation Applications and Instrumentation. Part, 42(8), 771-773. https://doi.org/10.1016/0883-2889(91)90182-Z
  • Erdem, M., Baykara, O., Doĝru, M., & Kuluöztürk, F. (2010). A novel shielding material prepared from solid waste containing lead for gamma ray. Radiation Physics and Chemistry, 79(9), 917-922. https://doi.org/10.1016/j.radphyschem.2010.04.009
  • Gerward, L., Guilbert, N., Jensen, K. B., & Levring, H. (2004). WinXCo-a program for calculating X-ray attenuation coefficients. Radiation Physics and Chemistry, 71(3), 653-654.https://doi.org/https://doi.org/10.1016/j.radphyschem.2004.04.040
  • Içelli, O., Erzeneoǧlu, S., & Boncukçuoǧlu, R. (2004). Experimental studies on measurements of mass attenuation coefficients of boric acid at different concentration. Annals of Nuclear Energy, 31(1), 97-106. https://doi.org/10.1016/S0306-4549(03)00171-3
  • Jalali, M., & Mohammadi, A. (2008). Gamma ray attenuation coefficient measurement for neutron-absorbent materials. Radiation Physics and Chemistry, 77(5), 523-527. https://doi.org/10.1016/j.radphyschem.2007.12.014
  • Marashdeh, M. W., Bauk, S., Tajuddin, A. A., & Hashim, R. (2012). Measurement of mass attenuation coefficients of Rhizophora spp. binderless particleboards in the 16.59-25.26keV photon energy range and their density profile using x-ray computed tomography. Applied Radiation and Isotopes, 70(4),656-662. https://doi.org/10.1016/j.apradiso.2012.01.008
  • Şakar, E. (2020). Determination of photon-shielding features and build-up factors of nickel–silver alloys. Radiation Physics and Chemistry,172(January). https://doi.org/10.1016/j.radphyschem.2020.108778
  • Şakar, E., Özpolat, Ö. F., Alım, B., Sayyed, M. I., & Kurudirek, M. (2020). Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiation Physics and Chemistry, 166(September 2019). https://doi.org/10.1016/j.radphyschem.2019.108496
  • Salama, E., & Maher, A. (2019). Application of GATE/GEANT 4 code in investigation of gamma shielding effectiveness of glass materials. Journal of Physics: Conference Series, 1253(1). https://doi.org/10.1088/1742-6596/1253/1/012032
  • Salinas, I. C. P., Conti, C. C., & Lopes, R. T. (2006). Effective density and mass attenuation coefficient for building material in Brazil. Applied Radiation and Isotopes, 64(1), 13-18. https://doi.org/10.1016/j.apradiso.2005.07.003
  • Saritha, B., & Nageswara Rao, A. S. (2014). Determination of attenuation coefficients of some wood materials based on thickness and chemical composition. Canadian Journal of Physics, 92(9), 968-972. https://doi.org/10.1139/cjp-2013-0427
  • Saritha, B., & Rao, A. S. N. (2013). Z dependence of photon interactions in wood materials. Canadian Journal of Physics, 91(3), 221-225. https://doi.org/10.1139/cjp-2012-0388
  • Shakhreet, B. Z., Bauk, S., Tajuddin, A. A., & Shukri, A. (2009). Mass attenuation coefficients of natural Rhizophora spp. wood for X-rays in the 15.77-25.27 keV range. Radiation Protection Dosimetry, 135(1), 47-53. https://doi.org/10.1093/rpd/ncp096
  • Tekin, H. O., Singh, V. P., & Manici, T. (2017). Effects of micro-sized and nano-sized WO3 on mass attenauation coefficients of concrete by using MCNPX code. Applied Radiation and Isotopes, 121, 122–125. https://doi.org/10.1016/j.apradiso.2016.12.040

Investigation of the Radiation Shielding Properties of Black Pine Wood Impregnated with Boric Acid

Yıl 2020, Cilt: 20 Sayı: 2, 200 - 207, 29.09.2020
https://doi.org/10.17475/kastorman.801770

Öz

Aim of study: The present work is to investigate the radiation shielding properties of impregnated black pine (Pinus nigra Arnold subsp. pallasiana) wood material by measuring linear attenuations coefficient, mass attenuations coefficient, half value and tenth value layer thickness for different gamma energies from 5 keV to 1000 keV.
Material and methods: The values of linear attenuation coefficient (1/cm), mass attenuation coefficient (cm2/g), half value and tenth value layer thickness of impregnated wood material were calculated in energy range between 5 to 1000 keV using the WinXCOM based Phy-X/PSD software and compared with concrete.
Main results: It has been found that the linear attenuation coefficient and the mass attenuation coefficient of impregnated wood decrease as photon energy increases. But, half value layer and tenth value layer of impregnated wood increased as photon energy increased. As a result, it was found that the radiation shielding properties of wood increasing with boric acid impregnation.
Highlights: The radiation shielding properties of impregnated wood are higher than pine wood because of its high density and chemical composition, which contains boron elements.

Kaynakça

  • Agar, O., Tekin, H. O., Sayyed, M. I., Korkmaz, M. E., Culfa, O., & Ertugay, C. (2019). Experimental investigation of photon attenuation behaviors for concretes including natural perlite mineral. Results in Physics, 12 (November 2018), 237-243. https://doi.org/10.1016/j.rinp.2018.11.053
  • Akkaş, A. (2016). Determination of the tenth and half value layer thickness of concretes with different densities. Acta Physica Polonica A, 129(4),770-772. https://doi.org/10.12693/APhysPolA.129.770
  • Akman, F., Turan, V., Sayyed, M. I., Akdemir, F., Kaçal, M. R., Durak, R., & Zaid, M. H. M. (2019). Comprehensive study on evaluation of shielding parameters of selected soils by gamma and X-rays transmission in the range 13.94-88.04 keV using WinXCom and FFAST programs. Results in Physics, 15 (August), 102751.https://doi.org/10.1016/j.rinp.2019.102751
  • Aşkın, A., & Dal, M. (2019). Investigation of The Gamma Ray Shielding Behaviour of (90-x) TeO2—xMoO3—10ZnO Glass System Using Geant4 Simulation Code and WinXCOM Database. Cumhuriyet Sci. J., 40(1), 197–203. https://doi.org/http://dx.doi.org/10.17776/csj.356185
  • Aygün, B. (2020). High alloyed new stainless steel shielding material for gamma and fast neutron radiation. Nuclear Engineering and Technology, 52(3), 647-653. https://doi.org/10.1016/j.net.2019.08.017
  • Bradley, D. A., Tajuddin, A. A., Sudin, C. W. A. C. W., & Bauk, S. (1991). Photon attenuation studies on tropical hardwoods. International Journal of Radiation Applications and Instrumentation. Part, 42(8), 771-773. https://doi.org/10.1016/0883-2889(91)90182-Z
  • Erdem, M., Baykara, O., Doĝru, M., & Kuluöztürk, F. (2010). A novel shielding material prepared from solid waste containing lead for gamma ray. Radiation Physics and Chemistry, 79(9), 917-922. https://doi.org/10.1016/j.radphyschem.2010.04.009
  • Gerward, L., Guilbert, N., Jensen, K. B., & Levring, H. (2004). WinXCo-a program for calculating X-ray attenuation coefficients. Radiation Physics and Chemistry, 71(3), 653-654.https://doi.org/https://doi.org/10.1016/j.radphyschem.2004.04.040
  • Içelli, O., Erzeneoǧlu, S., & Boncukçuoǧlu, R. (2004). Experimental studies on measurements of mass attenuation coefficients of boric acid at different concentration. Annals of Nuclear Energy, 31(1), 97-106. https://doi.org/10.1016/S0306-4549(03)00171-3
  • Jalali, M., & Mohammadi, A. (2008). Gamma ray attenuation coefficient measurement for neutron-absorbent materials. Radiation Physics and Chemistry, 77(5), 523-527. https://doi.org/10.1016/j.radphyschem.2007.12.014
  • Marashdeh, M. W., Bauk, S., Tajuddin, A. A., & Hashim, R. (2012). Measurement of mass attenuation coefficients of Rhizophora spp. binderless particleboards in the 16.59-25.26keV photon energy range and their density profile using x-ray computed tomography. Applied Radiation and Isotopes, 70(4),656-662. https://doi.org/10.1016/j.apradiso.2012.01.008
  • Şakar, E. (2020). Determination of photon-shielding features and build-up factors of nickel–silver alloys. Radiation Physics and Chemistry,172(January). https://doi.org/10.1016/j.radphyschem.2020.108778
  • Şakar, E., Özpolat, Ö. F., Alım, B., Sayyed, M. I., & Kurudirek, M. (2020). Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiation Physics and Chemistry, 166(September 2019). https://doi.org/10.1016/j.radphyschem.2019.108496
  • Salama, E., & Maher, A. (2019). Application of GATE/GEANT 4 code in investigation of gamma shielding effectiveness of glass materials. Journal of Physics: Conference Series, 1253(1). https://doi.org/10.1088/1742-6596/1253/1/012032
  • Salinas, I. C. P., Conti, C. C., & Lopes, R. T. (2006). Effective density and mass attenuation coefficient for building material in Brazil. Applied Radiation and Isotopes, 64(1), 13-18. https://doi.org/10.1016/j.apradiso.2005.07.003
  • Saritha, B., & Nageswara Rao, A. S. (2014). Determination of attenuation coefficients of some wood materials based on thickness and chemical composition. Canadian Journal of Physics, 92(9), 968-972. https://doi.org/10.1139/cjp-2013-0427
  • Saritha, B., & Rao, A. S. N. (2013). Z dependence of photon interactions in wood materials. Canadian Journal of Physics, 91(3), 221-225. https://doi.org/10.1139/cjp-2012-0388
  • Shakhreet, B. Z., Bauk, S., Tajuddin, A. A., & Shukri, A. (2009). Mass attenuation coefficients of natural Rhizophora spp. wood for X-rays in the 15.77-25.27 keV range. Radiation Protection Dosimetry, 135(1), 47-53. https://doi.org/10.1093/rpd/ncp096
  • Tekin, H. O., Singh, V. P., & Manici, T. (2017). Effects of micro-sized and nano-sized WO3 on mass attenauation coefficients of concrete by using MCNPX code. Applied Radiation and Isotopes, 121, 122–125. https://doi.org/10.1016/j.apradiso.2016.12.040
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Osman Emre Özkan Bu kişi benim

Yayımlanma Tarihi 29 Eylül 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 20 Sayı: 2

Kaynak Göster

APA Özkan, O. E. (2020). Investigation of the Radiation Shielding Properties of Black Pine Wood Impregnated with Boric Acid. Kastamonu University Journal of Forestry Faculty, 20(2), 200-207. https://doi.org/10.17475/kastorman.801770
AMA Özkan OE. Investigation of the Radiation Shielding Properties of Black Pine Wood Impregnated with Boric Acid. Kastamonu University Journal of Forestry Faculty. Eylül 2020;20(2):200-207. doi:10.17475/kastorman.801770
Chicago Özkan, Osman Emre. “Investigation of the Radiation Shielding Properties of Black Pine Wood Impregnated With Boric Acid”. Kastamonu University Journal of Forestry Faculty 20, sy. 2 (Eylül 2020): 200-207. https://doi.org/10.17475/kastorman.801770.
EndNote Özkan OE (01 Eylül 2020) Investigation of the Radiation Shielding Properties of Black Pine Wood Impregnated with Boric Acid. Kastamonu University Journal of Forestry Faculty 20 2 200–207.
IEEE O. E. Özkan, “Investigation of the Radiation Shielding Properties of Black Pine Wood Impregnated with Boric Acid”, Kastamonu University Journal of Forestry Faculty, c. 20, sy. 2, ss. 200–207, 2020, doi: 10.17475/kastorman.801770.
ISNAD Özkan, Osman Emre. “Investigation of the Radiation Shielding Properties of Black Pine Wood Impregnated With Boric Acid”. Kastamonu University Journal of Forestry Faculty 20/2 (Eylül 2020), 200-207. https://doi.org/10.17475/kastorman.801770.
JAMA Özkan OE. Investigation of the Radiation Shielding Properties of Black Pine Wood Impregnated with Boric Acid. Kastamonu University Journal of Forestry Faculty. 2020;20:200–207.
MLA Özkan, Osman Emre. “Investigation of the Radiation Shielding Properties of Black Pine Wood Impregnated With Boric Acid”. Kastamonu University Journal of Forestry Faculty, c. 20, sy. 2, 2020, ss. 200-7, doi:10.17475/kastorman.801770.
Vancouver Özkan OE. Investigation of the Radiation Shielding Properties of Black Pine Wood Impregnated with Boric Acid. Kastamonu University Journal of Forestry Faculty. 2020;20(2):200-7.

14178  14179       14165           14166           14167            14168