Araştırma Makalesi
BibTex RIS Kaynak Göster

Üre-Tiyoüre Temelli Şekerlerin Sentezi ve Enantiyoseçici Michael Katılmasında Organokatalitik Etkilerinin İncelenmesi

Yıl 2024, Cilt: 14 Sayı: 1, 38 - 49, 15.03.2024
https://doi.org/10.31466/kfbd.1336183

Öz

Glukofuranoz amin ve galaktopiranoz aminden üre ve tiyoüre temelli yeni organokatalizörlerin (7-10) sentezi ve karakterizasyonu yapılmıştır. Bu bileşikler, farklı diketonlara trans-ß-nitrostiren’e enantiyoseçici Michael katılmasında organokatalizör olarak test edilmiştir. Sıcaklık, çözücü ve katkı maddeleri gibi parametreler ile yapılan optimizasyon sonucunda organokatalizörlerin %99 verim ve %11 enantiyomerik aşırılık ile katalizlediği tespit edilmiştir.

Destekleyen Kurum

Kırıkkale Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

2017/060

Teşekkür

Bu çalışma Kırıkkale Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından 2017/060 numaralı araştırma projesiyle desteklenmiştir.

Kaynakça

  • Berner, O. M., Tedeschi, L., & Enders, D. (2002). Asymmetric Michael Additions to Nitroalkenes. European Journal of Organic Chemistry, 2002(12), 1877.
  • Blaser, H. U. (1992). The chiral pool as a source of enantioselective catalysts and auxiliaries. Chemical Reviews, 92(5), 935–952.
  • Boysen, M. M. K. (2007). Carbohydrates as Synthetic Tools in Organic Chemistry. Chemistry - A European Journal, 13(31), 8648–8659.
  • Casiraghi, G., Zanardi, F., Rassu, G., & Spanu, P. (1995). Stereoselective Approaches to Bioactive Carbohydrates and Alkaloids-With a Focus on Recent Syntheses Drawing from the Chiral Pool. Chemical Reviews, 95(6), 1677–1716.
  • Dondoni, A., & Massi, A. (2008). Asymmetric Organocatalysis: From Infancy to Adolescence. Angewandte Chemie International Edition, 47(25), 4638–4660.
  • Enders, D., & Chow, S. (2006). Organocatalytic Asymmetric Michael Addition of 2,2-Dimethyl-1,3-dioxan-5-one to Nitro Alkenes Employing Proline-Based Catalysts. European Journal of Organic Chemistry, 2006(20), 4578–4584.
  • Enders, D., Grondal, C., & Hüttl, M. R. M. (2007). Asymmetric Organocatalytic Domino Reactions. Angewandte Chemie International Edition, 46(10), 1570–1581.
  • Faísca Phillips, A. M. (2014). Applications of Carbohydrate-Based Organocatalysts in Enantioselective Synthesis. European Journal of Organic Chemistry, 2014(33), 7291–7303.
  • Gao, P., Wang, C., Wu, Y., Zhou, Z., & Tang, C. (2008). Sugar-Derived Bifunctional Thiourea Organocatalyzed Asymmetric Michael Addition of Acetylacetone to Nitroolefins. European Journal of Organic Chemistry, 2008(27), 4563–4566.
  • Işılar, Ö., Bulut, A., Sahin Yaglioglu, A., Demirtaş, İ., Arat, E., & Türk, M. (2020). Synthesis and biological evaluation of novel urea, thiourea and squaramide diastereomers possessing sugar backbone. Carbohydrate Research, 492, 107991.
  • Liu, K., Cui, H.-F., Nie, J., Dong, K.-Y., Li, X.-J., & Ma, J.-A. (2007). Highly Enantioselective Michael Addition of Aromatic Ketones to Nitroolefins Promoted by Chiral Bifunctional Primary Amine-thiourea Catalysts Based on Saccharides. Organic Letters, 9(5), 923–925.
  • Lu, A., Gao, P., Wu, Y., Wang, Y., Zhou, Z., & Tang, C. (2009). Highly enantio- and diastereoselective Michael addition of cyclohexanone to nitroolefins catalyzed by a chiral glucose-based bifunctional secondary amine-thiourea catalyst. Organic & Biomolecular Chemistry, 7(15), 3141.
  • Nayak, U. G., & Whistler, R. L. (1969). Nucleophilic displacement in 1,2:5,6-di-O-isopropylidene-3-O-(p-tolylsulfonyl)-.alpha.-D-glucofuranose. The Journal of Organic Chemistry, 34(12), 3819–3822.
  • Okino, T., Hoashi, Y., & Takemoto, Y. (2003). Enantioselective Michael Reaction of Malonates to Nitroolefins Catalyzed by Bifunctional Organocatalysts. Journal of the American Chemical Society, 125(42), 12672–12673.
  • Richardson, A. C. (1972). Amino Sugars via Reduction of Azides. In General Carbohydrate Method (pp. 218–224). Elsevier.
  • Singh, S. K., Mishra, N., Kumar, S., Jaiswal, M. K., & Tiwari, V. K. (2022). Growing Impact of Carbohydrate‐Based Organocatalysts. ChemistrySelect, 7(19).
  • Streicher, B., & Wünsch, B. (2003). Synthesis of amino-substituted hexo- and heptopyranoses from d-galactose. Carbohydrate Research, 338(22), 2375–2385.
  • Tsogoeva, S. B. (2007). Recent Advances in Asymmetric Organocatalytic 1,4‐Conjugate Additions. European Journal of Organic Chemistry, 2007(11), 1701–1716.
  • Wojaczyńska, E., Steppeler, F., Iwan, D., Scherrmann, M.-C., & Marra, A. (2021). Synthesis and Applications of Carbohydrate-Based Organocatalysts. Molecules, 26(23), 7291.
  • Ye, J., Dixon, D. J., & Hynes, P. S. (2005). Enantioselective organocatalytic Michael addition of malonate esters to nitro olefins using bifunctional cinchonine derivatives. Chemical Communications, 35, 4481.

Synthesis of Urea-Thiourea Based Sugars and Investigation of Organocatalytic Effects in Enantioselective Michael Addition

Yıl 2024, Cilt: 14 Sayı: 1, 38 - 49, 15.03.2024
https://doi.org/10.31466/kfbd.1336183

Öz

Synthesis and characterization of urea and thiourea based novel organocatalysts (7-10) from glucofuranose amine and galactopyranose amine were obtained. These compounds were tested as organocatalyst for the enantioselective Michael addition of various diketones to trans-ß-nitrostyrene. As a result of optimization parameters such as temperature, solvent and additives, the organocatalysts were catalyzed with 99% yield and 11% enantiomeric excess.

Proje Numarası

2017/060

Kaynakça

  • Berner, O. M., Tedeschi, L., & Enders, D. (2002). Asymmetric Michael Additions to Nitroalkenes. European Journal of Organic Chemistry, 2002(12), 1877.
  • Blaser, H. U. (1992). The chiral pool as a source of enantioselective catalysts and auxiliaries. Chemical Reviews, 92(5), 935–952.
  • Boysen, M. M. K. (2007). Carbohydrates as Synthetic Tools in Organic Chemistry. Chemistry - A European Journal, 13(31), 8648–8659.
  • Casiraghi, G., Zanardi, F., Rassu, G., & Spanu, P. (1995). Stereoselective Approaches to Bioactive Carbohydrates and Alkaloids-With a Focus on Recent Syntheses Drawing from the Chiral Pool. Chemical Reviews, 95(6), 1677–1716.
  • Dondoni, A., & Massi, A. (2008). Asymmetric Organocatalysis: From Infancy to Adolescence. Angewandte Chemie International Edition, 47(25), 4638–4660.
  • Enders, D., & Chow, S. (2006). Organocatalytic Asymmetric Michael Addition of 2,2-Dimethyl-1,3-dioxan-5-one to Nitro Alkenes Employing Proline-Based Catalysts. European Journal of Organic Chemistry, 2006(20), 4578–4584.
  • Enders, D., Grondal, C., & Hüttl, M. R. M. (2007). Asymmetric Organocatalytic Domino Reactions. Angewandte Chemie International Edition, 46(10), 1570–1581.
  • Faísca Phillips, A. M. (2014). Applications of Carbohydrate-Based Organocatalysts in Enantioselective Synthesis. European Journal of Organic Chemistry, 2014(33), 7291–7303.
  • Gao, P., Wang, C., Wu, Y., Zhou, Z., & Tang, C. (2008). Sugar-Derived Bifunctional Thiourea Organocatalyzed Asymmetric Michael Addition of Acetylacetone to Nitroolefins. European Journal of Organic Chemistry, 2008(27), 4563–4566.
  • Işılar, Ö., Bulut, A., Sahin Yaglioglu, A., Demirtaş, İ., Arat, E., & Türk, M. (2020). Synthesis and biological evaluation of novel urea, thiourea and squaramide diastereomers possessing sugar backbone. Carbohydrate Research, 492, 107991.
  • Liu, K., Cui, H.-F., Nie, J., Dong, K.-Y., Li, X.-J., & Ma, J.-A. (2007). Highly Enantioselective Michael Addition of Aromatic Ketones to Nitroolefins Promoted by Chiral Bifunctional Primary Amine-thiourea Catalysts Based on Saccharides. Organic Letters, 9(5), 923–925.
  • Lu, A., Gao, P., Wu, Y., Wang, Y., Zhou, Z., & Tang, C. (2009). Highly enantio- and diastereoselective Michael addition of cyclohexanone to nitroolefins catalyzed by a chiral glucose-based bifunctional secondary amine-thiourea catalyst. Organic & Biomolecular Chemistry, 7(15), 3141.
  • Nayak, U. G., & Whistler, R. L. (1969). Nucleophilic displacement in 1,2:5,6-di-O-isopropylidene-3-O-(p-tolylsulfonyl)-.alpha.-D-glucofuranose. The Journal of Organic Chemistry, 34(12), 3819–3822.
  • Okino, T., Hoashi, Y., & Takemoto, Y. (2003). Enantioselective Michael Reaction of Malonates to Nitroolefins Catalyzed by Bifunctional Organocatalysts. Journal of the American Chemical Society, 125(42), 12672–12673.
  • Richardson, A. C. (1972). Amino Sugars via Reduction of Azides. In General Carbohydrate Method (pp. 218–224). Elsevier.
  • Singh, S. K., Mishra, N., Kumar, S., Jaiswal, M. K., & Tiwari, V. K. (2022). Growing Impact of Carbohydrate‐Based Organocatalysts. ChemistrySelect, 7(19).
  • Streicher, B., & Wünsch, B. (2003). Synthesis of amino-substituted hexo- and heptopyranoses from d-galactose. Carbohydrate Research, 338(22), 2375–2385.
  • Tsogoeva, S. B. (2007). Recent Advances in Asymmetric Organocatalytic 1,4‐Conjugate Additions. European Journal of Organic Chemistry, 2007(11), 1701–1716.
  • Wojaczyńska, E., Steppeler, F., Iwan, D., Scherrmann, M.-C., & Marra, A. (2021). Synthesis and Applications of Carbohydrate-Based Organocatalysts. Molecules, 26(23), 7291.
  • Ye, J., Dixon, D. J., & Hynes, P. S. (2005). Enantioselective organocatalytic Michael addition of malonate esters to nitro olefins using bifunctional cinchonine derivatives. Chemical Communications, 35, 4481.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Fiziksel Kimya (Diğer)
Bölüm Makaleler
Yazarlar

Özer Işılar 0000-0001-7547-2537

Adnan Bulut 0000-0001-9322-0325

Proje Numarası 2017/060
Yayımlanma Tarihi 15 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 1

Kaynak Göster

APA Işılar, Ö., & Bulut, A. (2024). Üre-Tiyoüre Temelli Şekerlerin Sentezi ve Enantiyoseçici Michael Katılmasında Organokatalitik Etkilerinin İncelenmesi. Karadeniz Fen Bilimleri Dergisi, 14(1), 38-49. https://doi.org/10.31466/kfbd.1336183