Research Article
BibTex RIS Cite

Farklı Kümeleme Algoritmaları ile Kentsel Fonksiyonlara ve Gelişme Düzeylerine Göre Mahallelerin Kümelenmesi: Konya İli Örneği

Year 2022, , 889 - 902, 03.12.2022
https://doi.org/10.36306/konjes.1158414

Abstract

İnsan faktörünün etkisi altında ortaya çıkan ve zaman içinde gelişim sürecinde olan kentsel fonksiyonlar/faaliyetler, mahallelerin gelişmesinde önemli rol oynamaktadır. Mahalleler arasında dengeli bir gelişme durumu sağlamak için mahallelerin gelişmişlik düzeylerinin önceden bilinmesi gerekmektedir. Bu çalışma, Konya’daki 167 merkez mahallenin kentsel donatılar açısından kümelenmesine odaklanmaktadır ve bu mahallelerin gelişmişlik durumlarındaki benzerlikleri veya farklılıkları ortaya koymaktadır. Merkez mahalleleri kümelemek için K-ortalamalar, Hiyerarşik ve OPTICS kümeleme analizleri kullanılmıştır. Kümeleme analizlerinde kentsel fonksiyonlara ilişkin 18 özellik girdi parametresi olarak belirlenmiştir. Sonuçlar, kümeleme analizinin kentsel çalışmalarda kullanılabileceğini ve kentlerin gelişmişlik durumunu belirleyebileceğini göstermiştir. Mahalleler arasındaki gelişmişlik farklılıklarını ortaya çıkararak kentsel planlama yapmak ve daha uygun hizmet sunumu sağlamak için kümelenme çalışmaları yapılması önemlidir.

References

  • Arı, E., Hüyüktepe, B., 2019, “Sosyo-ekonomik göstergeler için çok değişkenli veri analizi: Türkiye için ampirik bir uygulama”, Aksaray Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 11, 7-20.
  • Aldino, A. A., Darwis, D., Prastowo, A. T., Sujana, C., 2021, Implementation of K-means algorithm for clustering corn planting feasibility area in south lampung regency, In Journal of Physics: Conference Series, 1751, 1, 012038, IOP Publishing.
  • Ankerst, M., Breunig, M. M., Kriegel, H. P., Sander, J., 1999, OPTICS: Ordering points to identify the clustering structure, ACM SIGMOD record, 28(2), 49-60.
  • Artmann, M., Inostroza, L., Fan, P. 2019, Urban sprawl, compact urban development and green cities, How much do we know, how much do we agree?, Ecological indicators, 96, 3-9.
  • Breunig, M. M., Kriegel, H. P., Ng, R. T., Sander, J. 1999, Optics-of: Identifying local outliers, In European Conference on Principles of Data Mining and Knowledge Discovery, 262-270, Springer, Berlin, Heidelberg.
  • Buffel, T., Phillipson, C., 2016, Can global cities be ‘age-friendly cities’? Urban development and ageing populations, Cities, 55, 94-100.
  • Campello, R. J., Kröger, P., Sander, J., Zimek, A., 2020, Density‐based clustering, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(2), e1343.
  • Çetin, İ., Sevüktekin, M., 2016, Türkiye'de gelişmişlik düzeyi farklılıklarının analizi, Uluslararası Ekonomik Araştırmalar Dergisi, 2(2), 39-61.
  • Davidson, I., Ravi, S. S., 2005, Agglomerative hierarchical clustering with constraints: Theoretical and empirical results, In European Conference on Principles of Data Mining and Knowledge Discovery, 59-70. Springer, Berlin, Heidelberg.
  • ESRI, 2021, Data classification methods (https://pro.arcgis.com/en/pro-app/latest/help/mapping/layer-properties/data-classification-methods.html).
  • Everitt, B. S., Landau, S., Leese, M., 2001, Cluster analysis arnold, A member of the Hodder Headline Group, London, 429-438.
  • Fernández, A., Gómez, S., 2008, Solving non-uniqueness in agglomerative hierarchical clustering using multidendrograms, Journal of Classification, 25(1), 43-65.
  • Fragkias, M., Seto, K. C., 2009, Evolving rank-size distributions of intra-metropolitan urban clusters in South China. Computers, Environment and Urban Systems, 33(3), 189-199.
  • Fuseini, I., Kemp, J., 2015, A review of spatial planning in Ghana's socio-economic development trajectory: A sustainable development perspective, Land use policy, 47, 309-320.
  • Gündüz, M. Y., 2019, Ataköy Ve Şirinevler Mahallelerinin Kentsel Donatı Elemanlarının Kent Kimliği Açısından Değerlendirilmesi, The Journal of Turk & Islam World Social Studies, 23, 255-281.
  • Karabulut, M., Gürbüz, M., Sandal, E. K., 2004, Hiyerarşik Kluster (Küme) Tekniği Kullanılarak Türkiye’de İllerin Sosyo-Ekonomik Benzerliklerinin Analizi. Coğrafi Bilimler Dergisi, 2(2), 65-78.
  • Kriegel, H. P., Schubert, E., Zimek, A., 2017, The (black) art of runtime evaluation: Are we comparing algorithms or implementations?, Knowledge and Information Systems, 52(2), 341-378.
  • MacQueen J. B., 1967, Some Methods for classification and Analysis of Multivariate Observations, Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, 1:281-297.
  • Sakarya, Â., İbişoğlu, Ç., 2015, Türkiye’de İllerin Sosyo-Ekonomik Gelişmişlik Endeksinin Coğrafi Ağırlıklı Regresyon Modeli İle Analizi, Marmara Coğrafya Dergisi, 32, 211-238.
  • Servi, T., Erişoğlu, Ü., 2020, Türkiye'deki şehirlerin sosyo-ekonomik gelişmişlik düzeylerinin istatistiksel analizi. Al Farabi Uluslararası Sosyal Bilimler Dergisi, 5(2), 174-186.
  • Sisman, S., Aydinoglu, A. C., 2020, Using GIS-based multi-criteria decision analysis techniques in the smart cities, International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences.
  • Snieška, V., Šimkūnaitė, I., 2009, Socio-economic impact of infrastructure investments, Inžinerinė ekonomika, 3, 16-25.
  • TÜİK, 2022, Türkiye İstatistik Kurumu, Nüfus ve Demografi İstatistikleri, 2022 Yılı Adrese Dayalı Nüfus Kayıt Sistemi Sonuçları, https://cip.tuik.gov.tr/#.
  • Uysal, F. N., Ersöz, T., Ersöz, F., 2017, Türkiye’deki illerin yaşam endeksinin çok değişkenli istatistik yöntemlerle incelenmesi. Ekonomi Bilimleri Dergisi, 9(1), 49-65.
  • Zhang, Q., Hu, Y., Liu, J., Liu, Y., Ren, W., Li, J., 2012, A quantitative assessment of the distribution and extent of urban clusters in China. Journal of Geographical Sciences, 22(1), 137-151.
  • https://pro.arcgis.com/en/pro-app/2.8/tool-reference/spatial-statistics/, (09.09.2022), URL1.
  • https://en.wikipedia.org/wiki/OPTICS_algorithm#cite_note-1 , (27.04.2022), URL2.
  • https://nodepit.com/node/org.knime.base.node.mine.optics.compute.OPTICSComputeNodeFactory , (26.04.2022), URL3.

CLUSTERING NEIGHBORHOODS ACCORDING TO URBAN FUNCTIONS AND DEVELOPMENT LEVELS BY DIFFERENT CLUSTERING ALGORITHMS: A CASE IN KONYA

Year 2022, , 889 - 902, 03.12.2022
https://doi.org/10.36306/konjes.1158414

Abstract

Urban functions/activities, which emerged under the influence of the human factor and are in the process of development over time, play a crucial role in the development of neighborhoods. To ensure balanced development status among the neighborhoods, it is necessary to know the development levels of the neighborhoods in advance. This study focuses on the clustering of the 167 central neighborhoods in Konya in terms of urban functions and reveals the similarities or differences in the development status of these neighborhoods. K-means, Hierarchical (agglomerative) and OPTICS clustering analyzes were used to cluster central neighborhoods. 18 features related to urban functions were determined as input parameters in the clustering analyzes. Results showed that cluster analysis can be used in urban studies and determine the development status of cities. It is important to carry out clustering studies to make urban planning by revealing the development differences between the neighborhoods and to provide more appropriate service delivery.

References

  • Arı, E., Hüyüktepe, B., 2019, “Sosyo-ekonomik göstergeler için çok değişkenli veri analizi: Türkiye için ampirik bir uygulama”, Aksaray Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 11, 7-20.
  • Aldino, A. A., Darwis, D., Prastowo, A. T., Sujana, C., 2021, Implementation of K-means algorithm for clustering corn planting feasibility area in south lampung regency, In Journal of Physics: Conference Series, 1751, 1, 012038, IOP Publishing.
  • Ankerst, M., Breunig, M. M., Kriegel, H. P., Sander, J., 1999, OPTICS: Ordering points to identify the clustering structure, ACM SIGMOD record, 28(2), 49-60.
  • Artmann, M., Inostroza, L., Fan, P. 2019, Urban sprawl, compact urban development and green cities, How much do we know, how much do we agree?, Ecological indicators, 96, 3-9.
  • Breunig, M. M., Kriegel, H. P., Ng, R. T., Sander, J. 1999, Optics-of: Identifying local outliers, In European Conference on Principles of Data Mining and Knowledge Discovery, 262-270, Springer, Berlin, Heidelberg.
  • Buffel, T., Phillipson, C., 2016, Can global cities be ‘age-friendly cities’? Urban development and ageing populations, Cities, 55, 94-100.
  • Campello, R. J., Kröger, P., Sander, J., Zimek, A., 2020, Density‐based clustering, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(2), e1343.
  • Çetin, İ., Sevüktekin, M., 2016, Türkiye'de gelişmişlik düzeyi farklılıklarının analizi, Uluslararası Ekonomik Araştırmalar Dergisi, 2(2), 39-61.
  • Davidson, I., Ravi, S. S., 2005, Agglomerative hierarchical clustering with constraints: Theoretical and empirical results, In European Conference on Principles of Data Mining and Knowledge Discovery, 59-70. Springer, Berlin, Heidelberg.
  • ESRI, 2021, Data classification methods (https://pro.arcgis.com/en/pro-app/latest/help/mapping/layer-properties/data-classification-methods.html).
  • Everitt, B. S., Landau, S., Leese, M., 2001, Cluster analysis arnold, A member of the Hodder Headline Group, London, 429-438.
  • Fernández, A., Gómez, S., 2008, Solving non-uniqueness in agglomerative hierarchical clustering using multidendrograms, Journal of Classification, 25(1), 43-65.
  • Fragkias, M., Seto, K. C., 2009, Evolving rank-size distributions of intra-metropolitan urban clusters in South China. Computers, Environment and Urban Systems, 33(3), 189-199.
  • Fuseini, I., Kemp, J., 2015, A review of spatial planning in Ghana's socio-economic development trajectory: A sustainable development perspective, Land use policy, 47, 309-320.
  • Gündüz, M. Y., 2019, Ataköy Ve Şirinevler Mahallelerinin Kentsel Donatı Elemanlarının Kent Kimliği Açısından Değerlendirilmesi, The Journal of Turk & Islam World Social Studies, 23, 255-281.
  • Karabulut, M., Gürbüz, M., Sandal, E. K., 2004, Hiyerarşik Kluster (Küme) Tekniği Kullanılarak Türkiye’de İllerin Sosyo-Ekonomik Benzerliklerinin Analizi. Coğrafi Bilimler Dergisi, 2(2), 65-78.
  • Kriegel, H. P., Schubert, E., Zimek, A., 2017, The (black) art of runtime evaluation: Are we comparing algorithms or implementations?, Knowledge and Information Systems, 52(2), 341-378.
  • MacQueen J. B., 1967, Some Methods for classification and Analysis of Multivariate Observations, Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, 1:281-297.
  • Sakarya, Â., İbişoğlu, Ç., 2015, Türkiye’de İllerin Sosyo-Ekonomik Gelişmişlik Endeksinin Coğrafi Ağırlıklı Regresyon Modeli İle Analizi, Marmara Coğrafya Dergisi, 32, 211-238.
  • Servi, T., Erişoğlu, Ü., 2020, Türkiye'deki şehirlerin sosyo-ekonomik gelişmişlik düzeylerinin istatistiksel analizi. Al Farabi Uluslararası Sosyal Bilimler Dergisi, 5(2), 174-186.
  • Sisman, S., Aydinoglu, A. C., 2020, Using GIS-based multi-criteria decision analysis techniques in the smart cities, International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences.
  • Snieška, V., Šimkūnaitė, I., 2009, Socio-economic impact of infrastructure investments, Inžinerinė ekonomika, 3, 16-25.
  • TÜİK, 2022, Türkiye İstatistik Kurumu, Nüfus ve Demografi İstatistikleri, 2022 Yılı Adrese Dayalı Nüfus Kayıt Sistemi Sonuçları, https://cip.tuik.gov.tr/#.
  • Uysal, F. N., Ersöz, T., Ersöz, F., 2017, Türkiye’deki illerin yaşam endeksinin çok değişkenli istatistik yöntemlerle incelenmesi. Ekonomi Bilimleri Dergisi, 9(1), 49-65.
  • Zhang, Q., Hu, Y., Liu, J., Liu, Y., Ren, W., Li, J., 2012, A quantitative assessment of the distribution and extent of urban clusters in China. Journal of Geographical Sciences, 22(1), 137-151.
  • https://pro.arcgis.com/en/pro-app/2.8/tool-reference/spatial-statistics/, (09.09.2022), URL1.
  • https://en.wikipedia.org/wiki/OPTICS_algorithm#cite_note-1 , (27.04.2022), URL2.
  • https://nodepit.com/node/org.knime.base.node.mine.optics.compute.OPTICSComputeNodeFactory , (26.04.2022), URL3.
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Ali Utku Akar 0000-0001-5639-9987

Sait Ali Uymaz 0000-0003-2748-8483

Publication Date December 3, 2022
Submission Date August 5, 2022
Acceptance Date September 10, 2022
Published in Issue Year 2022

Cite

IEEE A. U. Akar and S. A. Uymaz, “CLUSTERING NEIGHBORHOODS ACCORDING TO URBAN FUNCTIONS AND DEVELOPMENT LEVELS BY DIFFERENT CLUSTERING ALGORITHMS: A CASE IN KONYA”, KONJES, vol. 10, no. 4, pp. 889–902, 2022, doi: 10.36306/konjes.1158414.