Araştırma Makalesi
BibTex RIS Kaynak Göster

EXPERIMENTAL INVESTIGATION OF ABSORPTION AND THERMAL ANALYSIS OF DIFFERENT TYPES OF NANOPARTICLES WITH MOTOR OIL BASED NANOFLUIDS

Yıl 2023, , 87 - 102, 01.03.2023
https://doi.org/10.36306/konjes.1164260

Öz

Nanofluids are fluid suspensions of nanoparticles that exhibit notable properties enhancement even at low nanoparticle concentrations. This work compares the measured and calculated thermophysical parameters of nanofluidic motor oil. Thermophysical parameters of motor oils include thermal conductivity, viscosity, and Absorbance. The nanofluidic engine oil was prepared by dispersing multi-walled carbon nanotube (MWCNTs) and copper oxide (CuO) at different particle concentrations (0.03-0.12) %. The oil characteristics were measured at wide range of temperature. The viscosity data were found to be comparable to the numbers reported in literature. We found that the thermal conductivity increased up to five times with minor variance in some cases. The variation in thermal conductivity can be related to several reasons such as oil specifications and nanofluid preparation conditions. The measured Absorbance of the nanofluid is comparable to literature and has direct proportion relation with the volume fraction of nanoparticles.

Kaynakça

  • [1] S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles, Developments and applications of non-Newtonian flows”, Conference: Enhancing thermal conductivity of fluids with nanoparticles, 1995, pp. 99- 105.
  • [2] M. Hemmat Esfe, M. Afrand, W.-M. Yan, H. Yarmand, D. Toghraie and M. Dahari, “Effects of temperature and concentration on rheological behavior of MWCNTs/SiO2 (20–80)-SAE40 hybrid nano-lubricant”, International Communications in Heat and Mass Transfer, Volume 76, Pages 133-138, August 2016.
  • [3] Asadi, “A guideline towards easing the decision-making process in selecting an effective nanofluid as a heat transfer fluid”, Energy Conversion and Management, Volume 175, Pages 1-101, November 2018.
  • [4] M Afrand, K Nazari Najafabadi and M Akbari,” Effects of temperature and solid volume fraction on viscosity of SiO2-MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines, Applied Thermal Engineering, Volume 102, Pages 45-54, 5 June 2016.
  • [5] M. Fakoor, Pakdaman, M.A. Akhavan-Behabadi, P. Razi, “An experimental investigation on thermo-physical properties and overall performance of MWCNT/heat transfer oil nanofluid flow inside vertical helically coiled tubes”, Experimental Thermal and Fluid Science , Volume 40, Pages 103-111, July 2012.
  • [6] M. H Esfe, S. Saedodin, M. Rejvani, J. Shahram, “Experimental investigation, model development and sensitivity analysis of rheological behavior of ZnO/10W40 nano-lubricants for automotive applications”, Physical E: Low-dimensional Systems and Nanostructures, Volume 90, Pages 194-203, June 2017.
  • [7] K Motahari, M A Moghaddam and M Moradian, “Experimental investigation and development of new correlation for influences of temperature and concentration on dynamic viscosity of MWCNT-SiO2 (20-80)/20W50 hybrid nano-lubricant “,Chinese Journal of Chemical Engineering, Volume 26, Issue 1,Pages 152-158, January 2018.
  • [8] Y Xuan, H Duanb and Q Lib,” Enhancement of solar energy absorption using a plasmonic nanofluid based on TiO2/Ag composite nanoparticles”, RSC Advances, Issue 31, 2014.
  • [9] M. Karami, M.A. Akhavan Bahabadi , S. Delfani and A. Ghozatloo ,” A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector” , Solar Energy Materials and Solar Cells, Volume 121, Pages 114-118, February 2014.
  • [10] N Hordy, D Rabilloud, J Meunier and S Coulombe, “High temperature and long-term stability of carbon nanotube nanofluids for direct absorption solar thermal collectors”, Solar Energy, Volume 105 , Pages 82-90 July 2014.
  • [11] L Mercatelli, E Sani, G Zaccanti , F Martelli , P Di Ninni , S Barison , C Pagura , F Agresti and D Jafrancesco ,“Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers”, Nanoscale Research Letters 2011, 6:282, http://www.nanoscalereslett.com/content/6/1/282.
  • [12] E. Sani, S. Barison, C. Pagura, L. Mercatelli, P. Sansoni, D. Fontani, D. Jafrancesco, and F. Francini, “Carbon nanohorns-based nanofluids as direct sunlight absorbers”, Optics Express, Vol. 18, Issue 5, pp. 5179-5187, 2010, https://doi.org/10.1364/OE.18.005179.
  • [13] Y He, S Vasirajua and L Que, “Hybrid nanomaterial-based nanofluids for micropower generation” ,RSC Advances, Issue 5,Page 2103 to 2576, 2014.
  • [14] D Han, Z Meng, D Wu, C Zhang and H Zhu, “Thermal properties of carbon black aqueous nanofluids for solar absorption”, Nanoscale Research Letters 2011, 6:457 http://www.nanoscalereslett.com/content/6/1/457.
  • [15] D Wen, G Lin , S Vafaei and K Zhang, “Review of nanofluids for heat transfer applications” , Particuology, Volume 7, Issue 2, Pages 141-150, April 2009.
  • [16] M. Karami, M.A. Akhavan-Behabadi , M. Raisee Dehkordi , S. Delfani ,“Thermo-optical properties of copper oxide nanofluids for direct absorption of solar radiation”, Solar Energy Materials and Solar Cells, Volume 144, Pages 136-142, January 2016.
  • [17] R.M. Sarviya and V Fuskele, “Review on Thermal Conductivity of Nanofluids”, Materialstody proceeding , Volume 4, Issue 2, Pages 4022-4031, part A,2017, https://doi.org/10.1016/j.matpr.2017.02.304.
  • [18] M Y Nawaf, “Numerical and experimental analysis of direct absorption concentrated solar collector using nano-fluid”, Fen Bilimleri Enstitüsü, 2017.
  • [19] M Gupta, V Singh, R Kumar and Z. Said, “A review on thermophysical properties of nanofluids and heat transfer applications “, Renewable and Sustainable Energy Reviews, Volume 74, Pages 638-670 July 2017, https://doi.org/10.1016/j.rser.2017.02.073.
  • [20] S.M.S. Murshed, K.C. Leong and C. Yang, “Enhanced thermal conductivity of TiO2—water based nanofluids”, International Journal of Thermal Sciences, Volume 44, Issue 4, Pages 367-373 April 2005, https://doi.org/10.1016/j.ijthermalsci.2004.12.005.
  • [21] A K Singh, “Thermal Conductivity of Nanofluids”, Defence Science Journal, Vol. 58, No. 5, 2008.
  • [22] D. Bruggeman, “Dielectric constant and conductivity of mixtures of isotropic materials”, Annals of Physics 416 636-791, 1935
  • [23] Q Z Xue, “Model for thermal conductivity of carbon nanotube-based composites”, Physical B: Condensed Matter, Volume 368, Issues 1–4, Pages 302-307, November 2005, https://doi.org/10.1016/j.physb.2005.07.024.
  • [24] I V Belova and G E Murch,“ Monte Carlo simulation of the effective thermal conductivity in two-phase material”, Journal of Materials Processing Technology ,Volumes 153–154, Pages 741-745, 10 November 2004, https://doi.org/10.1016/j.jmatprotec.2004.04.191.
  • [25] M A Moghaddam and K Motahari, “Experimental investigation, sensitivity analysis and modeling of rheological behavior of MWCNT-CuO (30-70)/SAE40 hybrid nano-lubricant”, Applied Thermal Engineering, 2017, DOI: 10.1016/j.applthermaleng.2017.05.200.
  • [26] J. A. Eastman , S U S Choi, S. Li ,W. Yu and L. J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles”, Appl. Phys. Lett. 78, 718 ,2001, https://doi.org/10.1063/1.1341218.
  • [27] F E Lockwood, Z G Zhang, S U Cho, and J C Wang, “Thermal characteristics of new and used diesel engine oils”, Red, 8, 10-0,2001.
  • [28] I M. Alarifi , A B Alkouh , V Ali , H M Nguyen and A Asadi, “On the rheological properties of MWCNT-TiO2/oil hybrid nanofluid: An experimental investigation on the effects of shear rate, temperature, and solid concentration of nanoparticles” , Powder Technology, Volume 355, Pages 157-162, October 2019, https://doi.org/10.1016/j.powtec.2019.07.039.
  • [29] S U Ilyas, R Pendyala and M Narahari, “ Stability and thermal analysis of MWCNT thermal oil-based nanofluids”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 527, Pages 11-2220 , August 2017, https://doi.org/10.1016/j.colsurfa.2017.05.004.
  • [30] L Yang, J Xu, K Du, X Zhang, “Review Recent developments on viscosity and thermal conductivity of nanofluids” ,Powder Technology, Volume 317, Pages 348-369, 15 July 2017, https://doi.org/10.1016/j.powtec.2017.04.061.

Motor Yağı Bazlı Nanoakışkanlar ile Farklı Tipteki Nanoparçacıkların Absorpsiyon ve Termal Analizinin Deneysel Olarak İncelenmesi

Yıl 2023, , 87 - 102, 01.03.2023
https://doi.org/10.36306/konjes.1164260

Öz

Üstün termal ve fiziksel nitelikleri nedeniyle nano akışkanlar, ısı transferi uygulamalarında giderek daha fazla kullanılmaktadır. Bu araştırma, çeşitli termofiziksel parametreler için teorik hesaplamaları, bu kesin miktarların deneysel ölçümleriyle karşılaştırır. Dağınık MWCNT'ler ve CuO içeren bir nano akışkan olarak motor yağının termofiziksel özellikleri, geniş bir sıcaklık aralığı ve partikül konsantrasyon oranı boyunca incelenmiştir. Bu tür özelliklerin örnekleri ısı iletkenliği, viskozite ve emiciliktir. Viskozite verilerinin literatürle uyumlu olduğu görüldü. Bununla birlikte, diğer birçok araştırmacının onayladığı, termal iletkenlik sonuçlarında bariz bir tutarsızlık vardır. UV-Vis absorbans sonuçlarının daha önce mevcut olan literatürle karşılaştırılması tatmin ediciydi. Ancak, sıvının bileşenlerinin özellikleri ve hazırlama işlemlerinin koşulları da dahil olmak üzere çeşitli nedenlerle ilgili bazı farklılıklar vardır.

Kaynakça

  • [1] S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles, Developments and applications of non-Newtonian flows”, Conference: Enhancing thermal conductivity of fluids with nanoparticles, 1995, pp. 99- 105.
  • [2] M. Hemmat Esfe, M. Afrand, W.-M. Yan, H. Yarmand, D. Toghraie and M. Dahari, “Effects of temperature and concentration on rheological behavior of MWCNTs/SiO2 (20–80)-SAE40 hybrid nano-lubricant”, International Communications in Heat and Mass Transfer, Volume 76, Pages 133-138, August 2016.
  • [3] Asadi, “A guideline towards easing the decision-making process in selecting an effective nanofluid as a heat transfer fluid”, Energy Conversion and Management, Volume 175, Pages 1-101, November 2018.
  • [4] M Afrand, K Nazari Najafabadi and M Akbari,” Effects of temperature and solid volume fraction on viscosity of SiO2-MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines, Applied Thermal Engineering, Volume 102, Pages 45-54, 5 June 2016.
  • [5] M. Fakoor, Pakdaman, M.A. Akhavan-Behabadi, P. Razi, “An experimental investigation on thermo-physical properties and overall performance of MWCNT/heat transfer oil nanofluid flow inside vertical helically coiled tubes”, Experimental Thermal and Fluid Science , Volume 40, Pages 103-111, July 2012.
  • [6] M. H Esfe, S. Saedodin, M. Rejvani, J. Shahram, “Experimental investigation, model development and sensitivity analysis of rheological behavior of ZnO/10W40 nano-lubricants for automotive applications”, Physical E: Low-dimensional Systems and Nanostructures, Volume 90, Pages 194-203, June 2017.
  • [7] K Motahari, M A Moghaddam and M Moradian, “Experimental investigation and development of new correlation for influences of temperature and concentration on dynamic viscosity of MWCNT-SiO2 (20-80)/20W50 hybrid nano-lubricant “,Chinese Journal of Chemical Engineering, Volume 26, Issue 1,Pages 152-158, January 2018.
  • [8] Y Xuan, H Duanb and Q Lib,” Enhancement of solar energy absorption using a plasmonic nanofluid based on TiO2/Ag composite nanoparticles”, RSC Advances, Issue 31, 2014.
  • [9] M. Karami, M.A. Akhavan Bahabadi , S. Delfani and A. Ghozatloo ,” A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector” , Solar Energy Materials and Solar Cells, Volume 121, Pages 114-118, February 2014.
  • [10] N Hordy, D Rabilloud, J Meunier and S Coulombe, “High temperature and long-term stability of carbon nanotube nanofluids for direct absorption solar thermal collectors”, Solar Energy, Volume 105 , Pages 82-90 July 2014.
  • [11] L Mercatelli, E Sani, G Zaccanti , F Martelli , P Di Ninni , S Barison , C Pagura , F Agresti and D Jafrancesco ,“Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers”, Nanoscale Research Letters 2011, 6:282, http://www.nanoscalereslett.com/content/6/1/282.
  • [12] E. Sani, S. Barison, C. Pagura, L. Mercatelli, P. Sansoni, D. Fontani, D. Jafrancesco, and F. Francini, “Carbon nanohorns-based nanofluids as direct sunlight absorbers”, Optics Express, Vol. 18, Issue 5, pp. 5179-5187, 2010, https://doi.org/10.1364/OE.18.005179.
  • [13] Y He, S Vasirajua and L Que, “Hybrid nanomaterial-based nanofluids for micropower generation” ,RSC Advances, Issue 5,Page 2103 to 2576, 2014.
  • [14] D Han, Z Meng, D Wu, C Zhang and H Zhu, “Thermal properties of carbon black aqueous nanofluids for solar absorption”, Nanoscale Research Letters 2011, 6:457 http://www.nanoscalereslett.com/content/6/1/457.
  • [15] D Wen, G Lin , S Vafaei and K Zhang, “Review of nanofluids for heat transfer applications” , Particuology, Volume 7, Issue 2, Pages 141-150, April 2009.
  • [16] M. Karami, M.A. Akhavan-Behabadi , M. Raisee Dehkordi , S. Delfani ,“Thermo-optical properties of copper oxide nanofluids for direct absorption of solar radiation”, Solar Energy Materials and Solar Cells, Volume 144, Pages 136-142, January 2016.
  • [17] R.M. Sarviya and V Fuskele, “Review on Thermal Conductivity of Nanofluids”, Materialstody proceeding , Volume 4, Issue 2, Pages 4022-4031, part A,2017, https://doi.org/10.1016/j.matpr.2017.02.304.
  • [18] M Y Nawaf, “Numerical and experimental analysis of direct absorption concentrated solar collector using nano-fluid”, Fen Bilimleri Enstitüsü, 2017.
  • [19] M Gupta, V Singh, R Kumar and Z. Said, “A review on thermophysical properties of nanofluids and heat transfer applications “, Renewable and Sustainable Energy Reviews, Volume 74, Pages 638-670 July 2017, https://doi.org/10.1016/j.rser.2017.02.073.
  • [20] S.M.S. Murshed, K.C. Leong and C. Yang, “Enhanced thermal conductivity of TiO2—water based nanofluids”, International Journal of Thermal Sciences, Volume 44, Issue 4, Pages 367-373 April 2005, https://doi.org/10.1016/j.ijthermalsci.2004.12.005.
  • [21] A K Singh, “Thermal Conductivity of Nanofluids”, Defence Science Journal, Vol. 58, No. 5, 2008.
  • [22] D. Bruggeman, “Dielectric constant and conductivity of mixtures of isotropic materials”, Annals of Physics 416 636-791, 1935
  • [23] Q Z Xue, “Model for thermal conductivity of carbon nanotube-based composites”, Physical B: Condensed Matter, Volume 368, Issues 1–4, Pages 302-307, November 2005, https://doi.org/10.1016/j.physb.2005.07.024.
  • [24] I V Belova and G E Murch,“ Monte Carlo simulation of the effective thermal conductivity in two-phase material”, Journal of Materials Processing Technology ,Volumes 153–154, Pages 741-745, 10 November 2004, https://doi.org/10.1016/j.jmatprotec.2004.04.191.
  • [25] M A Moghaddam and K Motahari, “Experimental investigation, sensitivity analysis and modeling of rheological behavior of MWCNT-CuO (30-70)/SAE40 hybrid nano-lubricant”, Applied Thermal Engineering, 2017, DOI: 10.1016/j.applthermaleng.2017.05.200.
  • [26] J. A. Eastman , S U S Choi, S. Li ,W. Yu and L. J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles”, Appl. Phys. Lett. 78, 718 ,2001, https://doi.org/10.1063/1.1341218.
  • [27] F E Lockwood, Z G Zhang, S U Cho, and J C Wang, “Thermal characteristics of new and used diesel engine oils”, Red, 8, 10-0,2001.
  • [28] I M. Alarifi , A B Alkouh , V Ali , H M Nguyen and A Asadi, “On the rheological properties of MWCNT-TiO2/oil hybrid nanofluid: An experimental investigation on the effects of shear rate, temperature, and solid concentration of nanoparticles” , Powder Technology, Volume 355, Pages 157-162, October 2019, https://doi.org/10.1016/j.powtec.2019.07.039.
  • [29] S U Ilyas, R Pendyala and M Narahari, “ Stability and thermal analysis of MWCNT thermal oil-based nanofluids”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 527, Pages 11-2220 , August 2017, https://doi.org/10.1016/j.colsurfa.2017.05.004.
  • [30] L Yang, J Xu, K Du, X Zhang, “Review Recent developments on viscosity and thermal conductivity of nanofluids” ,Powder Technology, Volume 317, Pages 348-369, 15 July 2017, https://doi.org/10.1016/j.powtec.2017.04.061.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Jasim Al-enezy 0000-0002-4230-5131

Rafet Yapıcı 0000-0002-1109-7480

Amar Hameed 0000-0003-0020-1374

Yayımlanma Tarihi 1 Mart 2023
Gönderilme Tarihi 19 Ağustos 2022
Kabul Tarihi 15 Kasım 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

IEEE J. Al-enezy, R. Yapıcı, ve A. Hameed, “EXPERIMENTAL INVESTIGATION OF ABSORPTION AND THERMAL ANALYSIS OF DIFFERENT TYPES OF NANOPARTICLES WITH MOTOR OIL BASED NANOFLUIDS”, KONJES, c. 11, sy. 1, ss. 87–102, 2023, doi: 10.36306/konjes.1164260.