Research Article
BibTex RIS Cite

FARKLI ÇÖZÜCÜ ORTAMLARINDA TUNGSTOFOSFORİK ASİT KATALİZÖRLÜĞÜNDE KİTOSANDAN LEVULİNİK ASİT ELDESİ

Year 2023, , 370 - 378, 01.06.2023
https://doi.org/10.36306/konjes.1202828

Abstract

Bu çalışmada kitosan ve glukozun farklı çözücü ortamlarında belirli sıcaklık ve sürede tungstofosforik asit katalizörlüğünde tek basamakta hidrolizi ve levulinik aside dönüşümleri incelenmiştir. Katalitik dönüşüm prosesinde kütlece 1:5 oranında (yardımcı çözücü-su) sulu ortama eklenen γ-valerolakton, kitosanın levulinik aside dönüşüm verimini değiştirmezken, glukoz dönüşüm verimini yaklaşık iki katına çıkarmıştır. Sulu ortama aynı oranda 1 butil 3 metilimidazolyum hidrojensülfat ilavesinde ise hem kitosan hem de glukoz dönüşümlerinde levulinik asit verimi sırasıyla %3,7 ve %22,7’ye ulaşmıştır. Kitosanın su/1 butil-3-metilimidazolyum hidrojensülfat ortamında dönüşümü sonrası toplam indirgen şeker miktarı ve katı atığın FT-IR spektrumu incelendiğinde iyonik sıvının asidik karakterinin hidroliz ve dönüşüm üzerinde etkili olduğu görülmektedir. Katalizörsüz sulu ortamda biyokütle dönüşümünde levulinik asit oluşmazken, tungstofosforik asit kullanıldığında kitosandan %3,1, glukozdan ise %7,0 verimle levulinik asit elde edilmiştir.

Supporting Institution

Bursa Teknik Üniversitesi

References

  • [1] A. Morone, M. Apte, and R. A. Pandey, “Levulinic acid production from renewable waste resources: Bottlenecks, potential remedies, advancements and applications,” Renewable and Sustainable Energy Reviews, vol. 51, pp. 548-565, 2015.
  • [2] W. Hou, L. Liu, and H. Shen, “Selective conversion of chitosan to levulinic acid catalysed by acidic ionic liquid: Intriguing NH2 effect in comparison with cellulose,” Carbohydate Polymers, vol. 195, pp. 267-274, 2018.
  • [3] J. A. Dumesic, D. Martin Alonso, and J. S. Luterbacher, “Biomass pre-treatment for co-production of high-concentration C5- and C6-carbohydrates and their derivatives,” U.S. Patent 9,359,650, June, 2016.
  • [4] H. Q. Lê, H. Sixta, and M. Hummel, “Ionic liquids and gamma-valerolactone as case studies for green solvents in the deconstruction and refining of biomass,” Current Opinion in Green and Sustainable Chemistry, vol. 18, pp. 20-24, 2019.
  • [5] X. Li, Q. Liu, C. Luo, X. Gu, L. Lu, and X. Lu, “Kinetics of Furfural Production from Corn Cob in γ-Valerolactone Using Dilute Sulfuric Acid as Catalyst,” ACS Sustainable Chemistry & Engineering, vol. 5, no. 10, pp. 8587-8593, 2017.
  • [6] F. Huang, W. Li, Q. Liu, T. Zhang, S. An, D. Li, and X. Zhu, “Sulfonated tobacco stem carbon as efficient catalyst for dehydration of C6 carbohydrate to 5-hydroxymethylfurfural in γ- valerolactone/water,” Fuel Processing Technology, vol. 181, pp. 294-303, 2018.
  • [7] S. G. Wettstein, D. M. Alonso, Y. Chong, and J. A. Dumesic, “Production of levulinic acid and gamma-valerolactone (GVL) from cellulose using GVL as a solvent in biphasic systems,” Energy & Environmental Science, vol. 5, no. 8, pp. 8199-8203, 2012.
  • [8] M. R. Park, H. S. Kim, S. K. Kim, and G. T. Jeong, “Thermo-chemical conversion for production of levulinic and formic acids from glucosamine,” Fuel Processing Technology, vol. 172, pp. 115-124, 2018.
  • [9] T. Zhang, W. Li, S. An, F. Huang, X. Li, J. Liu, G. Pei, and Q. Liu, “Efficient transformation of corn stover to furfural using p-hydroxybenzenesulfonic acid-formaldehyde resin solid acid,” Bioresource Technology, vol. 264, pp. 261-267, 2018.
  • [10] J. X. Feng, H. J. Zang, Q. Yan, M. G. Li, and B. W. Cheng, “Conversion of Chitosan into 5- Hydroxymethylfurfural via Hydrothermal Synthesis,” Advance Material Research, vol. 1095, pp. 411-414, 2015.
  • [11] X. Li, X. Lu, S. Nie, M. Liang, Z. Yu, B. Duan, J. Yang, R. Xu, L. Lu, and C. Si , “Efficient catalytic production of biomass-derived levulinic acid over phosphotungstic acid in deep eutectic solvent,” Industrial Crops and Products, vol. 145, p. 112154, 2020.
  • [12] A. Nayak, I. N. Pulidindi, and C. S. Rao, “Novel strategies for glucose production from biomass using heteropoly acid catalyst,” Renewable Energy, vol. 159, pp. 215-220, 2020.
  • [13] B. Nis and B. Kaya Ozsel, “Efficient direct conversion of lignocellulosic biomass into biobased platform chemicals in ionic liquid-water medium,” Renewable Energy, vol. 169, pp. 1051-1057, 2021.
  • [14] Y. Jiang, H. Zang, S. Han, B. Yan, S. Yu, and B. Cheng, “Direct conversion of chitosan to 5- hydroxymethylfurfural in water using Brønsted-Lewis acidic ionic liquids as catalysts,” RSC Advance, vol. 6, no. 105, pp. 103774-103781, 2016.
  • [15] F. W. Low, N.A. Samsudin, Y. Yusoff, X. Y. Tan, C. W. Lai, N. Amin, and S. K. Tiong, “Hydrolytic cleavage of glycosidic bonds for cellulose nanoparticles (CNPs) production by BmimHSO4 ionic liquid catalyst,” Thermochimica Acta, vol. 684, p. 178484, 2020.
  • [16] B. Song, Y. Yu, and H. Wu, “Solvent effect of gamma-valerolactone (GVL) on cellulose and biomass hydrolysis in hot-compressed GVL/water mixtures,” Fuel, vol. 232, pp. 317-322, 2018.
  • [17] S. S. Chen, I. K. M. Yu, D. C. W. Tsang, A. C. K. Yip, E. Khan, L. Wang, Y. S. Ok, and C. S. Poon, “Valorization of cellulosic food waste into levulinic acid catalyzed by heterogeneous Brønsted acids: Temperature and solvent effects,” Chemical Engineering Journal, vol. 327, pp. 328-335, 2017.
  • [18] Q. Zhao, L. Wang, S. Zhao, X. Wang, and S. Wang, “High selective production of 5- hydroymethylfurfural from fructose by a solid heteropolyacid catalyst,” Fuel, vol. 90, no. 6, pp. 2289-2293, 2011.
  • [19] K. L. Chang, Q. T. Huynh, C. T. Zhong, W. R. Chen, H. Y. Wang, P. Phitsuwan, Y. C. Lin, and G. C. C. Yang, “Production of 5-hydroxymethylfurfural from glucose by recyclable heteropolyacid catalyst in ionic liquid,” Environmental Technology & Innovation, vol. 28, p. 102844, 2022.
  • [20] Y. Wang, Z. Hu, G. Fan, J. Yan, G. Song, and J. Li, “Catalytic Conversion of Glucose to 5- (Hydroxymethyl)furfural Over Phosphotungstic Acid Supported on SiO2-Coated Fe3O4,” Waste and Biomass Valorization, vol. 10, pp. 2263-2271, 2019.
  • [21] H. Qu, B. Liu, G. Gao, Y. Ma, Y. Zhou, H. Zhou, L. Li, Y. Li, and S. Liu, “Metal-organic framework containing Brønsted acidity and Lewis acidity for efficient conversion glucose to levulinic acid,” Fuel Processing Technology, vol. 193, pp. 1-6, 2019.
  • [22] M. Li, H. Zang, J. Feng, Q. Yan, N. Yu, X. Shi, and B. Cheng, “Efficient conversion of chitosan into 5-hydroxymethylfurfural via hydrothermal synthesis in ionic liquids aqueous solution,” Polymer Degradation and Stability, vol. 121, pp. 331-339, 2015.
  • [23] E. Stodolak-Zych, P. Jeleń, E. Dzierzkowska, M. Krok-Borkowicz, Ł. Zych, M. Boguń, A. Rapacz- Kmita, and B. Kolesińska, “Modification of chitosan fibers with short peptides as a model of synthetic extracellular matrix,” Jourbal of Molecular Structure, vol. 1211, p. 128061, 2020.
  • [24] R. Tan, C. Liu, N. Feng, J. Xiao, W. Zheng, A. Zheng, and D. Yin, “Phosphotungstic acid loaded on hydrophilic ionic liquid modified SBA-15 for selective oxidation of alcohols with aqueous H2O2,” Microporous Mesoporous Materials, vol. 158, pp. 77-87, 2012.

Production of Levulinic Acid from Chitosan in Different Solvent Mediums Using Tungstophosphoric Acid as Catalyst

Year 2023, , 370 - 378, 01.06.2023
https://doi.org/10.36306/konjes.1202828

Abstract

In this study, tungstophosphoric acid catalyzed one-step hydrolysis and conversion of chitosan and glucose to levulinic acid in different solvent mediums at a certain temperature and time were investigated. In catalytic conversion process, γ-valerolactone added to the aqueous medium at a 1:5 mass ratio (cosolvent-water) did not change the levulinic acid conversion efficiency of chitosan, but increased glucose conversion efficiency by two-fold. When 1-butyl-3-methylimidazolium hydrogensulfate was added to the aqueous medium at the same ratio, the yield of levulinic acid in both chitosan and glucose conversion reached 3.7% and 22.7%, respectively. When the total amount of reducing sugar after the conversion of chitosan in water/1-butyl-3-methylimidazolium hydrogensulfate medium and FT-IR spectrum of solid waste were examined, it can be seen that the acidic character of ionic liquid is effective on hydrolysis and conversion. While no levulinic acid was obtained during the biomass conversion in aqueous medium without any catalyst, by using tungstophosphoric acid, levulinic acid was obtained with a yield of 3.1% from chitosan and 7.0% from glucose.

References

  • [1] A. Morone, M. Apte, and R. A. Pandey, “Levulinic acid production from renewable waste resources: Bottlenecks, potential remedies, advancements and applications,” Renewable and Sustainable Energy Reviews, vol. 51, pp. 548-565, 2015.
  • [2] W. Hou, L. Liu, and H. Shen, “Selective conversion of chitosan to levulinic acid catalysed by acidic ionic liquid: Intriguing NH2 effect in comparison with cellulose,” Carbohydate Polymers, vol. 195, pp. 267-274, 2018.
  • [3] J. A. Dumesic, D. Martin Alonso, and J. S. Luterbacher, “Biomass pre-treatment for co-production of high-concentration C5- and C6-carbohydrates and their derivatives,” U.S. Patent 9,359,650, June, 2016.
  • [4] H. Q. Lê, H. Sixta, and M. Hummel, “Ionic liquids and gamma-valerolactone as case studies for green solvents in the deconstruction and refining of biomass,” Current Opinion in Green and Sustainable Chemistry, vol. 18, pp. 20-24, 2019.
  • [5] X. Li, Q. Liu, C. Luo, X. Gu, L. Lu, and X. Lu, “Kinetics of Furfural Production from Corn Cob in γ-Valerolactone Using Dilute Sulfuric Acid as Catalyst,” ACS Sustainable Chemistry & Engineering, vol. 5, no. 10, pp. 8587-8593, 2017.
  • [6] F. Huang, W. Li, Q. Liu, T. Zhang, S. An, D. Li, and X. Zhu, “Sulfonated tobacco stem carbon as efficient catalyst for dehydration of C6 carbohydrate to 5-hydroxymethylfurfural in γ- valerolactone/water,” Fuel Processing Technology, vol. 181, pp. 294-303, 2018.
  • [7] S. G. Wettstein, D. M. Alonso, Y. Chong, and J. A. Dumesic, “Production of levulinic acid and gamma-valerolactone (GVL) from cellulose using GVL as a solvent in biphasic systems,” Energy & Environmental Science, vol. 5, no. 8, pp. 8199-8203, 2012.
  • [8] M. R. Park, H. S. Kim, S. K. Kim, and G. T. Jeong, “Thermo-chemical conversion for production of levulinic and formic acids from glucosamine,” Fuel Processing Technology, vol. 172, pp. 115-124, 2018.
  • [9] T. Zhang, W. Li, S. An, F. Huang, X. Li, J. Liu, G. Pei, and Q. Liu, “Efficient transformation of corn stover to furfural using p-hydroxybenzenesulfonic acid-formaldehyde resin solid acid,” Bioresource Technology, vol. 264, pp. 261-267, 2018.
  • [10] J. X. Feng, H. J. Zang, Q. Yan, M. G. Li, and B. W. Cheng, “Conversion of Chitosan into 5- Hydroxymethylfurfural via Hydrothermal Synthesis,” Advance Material Research, vol. 1095, pp. 411-414, 2015.
  • [11] X. Li, X. Lu, S. Nie, M. Liang, Z. Yu, B. Duan, J. Yang, R. Xu, L. Lu, and C. Si , “Efficient catalytic production of biomass-derived levulinic acid over phosphotungstic acid in deep eutectic solvent,” Industrial Crops and Products, vol. 145, p. 112154, 2020.
  • [12] A. Nayak, I. N. Pulidindi, and C. S. Rao, “Novel strategies for glucose production from biomass using heteropoly acid catalyst,” Renewable Energy, vol. 159, pp. 215-220, 2020.
  • [13] B. Nis and B. Kaya Ozsel, “Efficient direct conversion of lignocellulosic biomass into biobased platform chemicals in ionic liquid-water medium,” Renewable Energy, vol. 169, pp. 1051-1057, 2021.
  • [14] Y. Jiang, H. Zang, S. Han, B. Yan, S. Yu, and B. Cheng, “Direct conversion of chitosan to 5- hydroxymethylfurfural in water using Brønsted-Lewis acidic ionic liquids as catalysts,” RSC Advance, vol. 6, no. 105, pp. 103774-103781, 2016.
  • [15] F. W. Low, N.A. Samsudin, Y. Yusoff, X. Y. Tan, C. W. Lai, N. Amin, and S. K. Tiong, “Hydrolytic cleavage of glycosidic bonds for cellulose nanoparticles (CNPs) production by BmimHSO4 ionic liquid catalyst,” Thermochimica Acta, vol. 684, p. 178484, 2020.
  • [16] B. Song, Y. Yu, and H. Wu, “Solvent effect of gamma-valerolactone (GVL) on cellulose and biomass hydrolysis in hot-compressed GVL/water mixtures,” Fuel, vol. 232, pp. 317-322, 2018.
  • [17] S. S. Chen, I. K. M. Yu, D. C. W. Tsang, A. C. K. Yip, E. Khan, L. Wang, Y. S. Ok, and C. S. Poon, “Valorization of cellulosic food waste into levulinic acid catalyzed by heterogeneous Brønsted acids: Temperature and solvent effects,” Chemical Engineering Journal, vol. 327, pp. 328-335, 2017.
  • [18] Q. Zhao, L. Wang, S. Zhao, X. Wang, and S. Wang, “High selective production of 5- hydroymethylfurfural from fructose by a solid heteropolyacid catalyst,” Fuel, vol. 90, no. 6, pp. 2289-2293, 2011.
  • [19] K. L. Chang, Q. T. Huynh, C. T. Zhong, W. R. Chen, H. Y. Wang, P. Phitsuwan, Y. C. Lin, and G. C. C. Yang, “Production of 5-hydroxymethylfurfural from glucose by recyclable heteropolyacid catalyst in ionic liquid,” Environmental Technology & Innovation, vol. 28, p. 102844, 2022.
  • [20] Y. Wang, Z. Hu, G. Fan, J. Yan, G. Song, and J. Li, “Catalytic Conversion of Glucose to 5- (Hydroxymethyl)furfural Over Phosphotungstic Acid Supported on SiO2-Coated Fe3O4,” Waste and Biomass Valorization, vol. 10, pp. 2263-2271, 2019.
  • [21] H. Qu, B. Liu, G. Gao, Y. Ma, Y. Zhou, H. Zhou, L. Li, Y. Li, and S. Liu, “Metal-organic framework containing Brønsted acidity and Lewis acidity for efficient conversion glucose to levulinic acid,” Fuel Processing Technology, vol. 193, pp. 1-6, 2019.
  • [22] M. Li, H. Zang, J. Feng, Q. Yan, N. Yu, X. Shi, and B. Cheng, “Efficient conversion of chitosan into 5-hydroxymethylfurfural via hydrothermal synthesis in ionic liquids aqueous solution,” Polymer Degradation and Stability, vol. 121, pp. 331-339, 2015.
  • [23] E. Stodolak-Zych, P. Jeleń, E. Dzierzkowska, M. Krok-Borkowicz, Ł. Zych, M. Boguń, A. Rapacz- Kmita, and B. Kolesińska, “Modification of chitosan fibers with short peptides as a model of synthetic extracellular matrix,” Jourbal of Molecular Structure, vol. 1211, p. 128061, 2020.
  • [24] R. Tan, C. Liu, N. Feng, J. Xiao, W. Zheng, A. Zheng, and D. Yin, “Phosphotungstic acid loaded on hydrophilic ionic liquid modified SBA-15 for selective oxidation of alcohols with aqueous H2O2,” Microporous Mesoporous Materials, vol. 158, pp. 77-87, 2012.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Şeyma Özdemir This is me 0000-0002-8823-7381

Berna Niş This is me 0000-0002-4955-7366

Burçak Kaya Özsel 0000-0003-2190-3834

Publication Date June 1, 2023
Submission Date November 11, 2022
Acceptance Date February 7, 2023
Published in Issue Year 2023

Cite

IEEE Ş. Özdemir, B. Niş, and B. Kaya Özsel, “FARKLI ÇÖZÜCÜ ORTAMLARINDA TUNGSTOFOSFORİK ASİT KATALİZÖRLÜĞÜNDE KİTOSANDAN LEVULİNİK ASİT ELDESİ”, KONJES, vol. 11, no. 2, pp. 370–378, 2023, doi: 10.36306/konjes.1202828.