Research Article
BibTex RIS Cite

EĞİK ÇATLAK İÇEREN ÇELİK PLAKANIN YORULMA DAVRANIŞININ FARKLI HASAR MODELLERİYLE TAHMİNİ

Year 2020, , 586 - 600, 03.09.2020
https://doi.org/10.36306/konjes.684071

Abstract

Çoğu mühendislik yapı ve uygulamalarında malzeme, imalat yöntemi, çevresel faktörler veya yapıya
etkiyen yükleme türleri gibi birçok parametreden kaynaklı çatlak veya kırılma problemleri ile
karşılaşılmaktadır. Özellikle yüksek teknoloji gerektiren ve Ar-Ge harcamalarının yüksek olduğu bazı
kritik yapılarda ise, bu problemler çok büyük bir sorun haline gelebilmektedir. Yapıda bulunan bu
çatlaklar bazen emniyetli bir boyuta kadar yapının içerisinde kalabilmekte veya bazen ani bir kırılma ile
büyük maddi hasarlara, hatta bazı durumlarda ciddi can kayıplarına da neden olabilmektedirler. Bu tür
olumsuz durumların önüne geçmek için, yapıda var olan çatlaklar ile yapının fonksiyonunu ne kadar süre
ile güvenli bir şekilde devam ettirebileceğinin, bir başka deyişle hasarlı yapının emniyetli kalan ömrünün
tespiti için kırılma parametrelerinin hassas ve doğru bir şekilde hesaplanması gerekmektedir. Ayrıca farklı
yükleme koşulları altında hasarlı yapının nasıl davranacağının bilinmesi ve tasarım aşamasında bu
durumlar göz önünde bulundurularak tasarımda iyileştirmeye gidilmesi, oluşması muhtemel hasarları
minimize etme imkanı sunmaktadır. Bu çalışmada, karışık modlu yüklere maruz çatlaklı yapıların kırılma
ve çatlak ilerleme davranışının tahminine yönelik olarak yakın zamanda geliştirilmiş olan Demir ve Ayhan
hasar modelinin uygulanabilirliği literatürdeki mevcut hasar modelleri ile birlikte değerlendirilmiştir.
Alüminyum malzeme kullanılarak farklı geometri ve boyutlara sahip test numuneleri ile geliştirilen Demir
ve Ayhan hasar modelinin çelik numuneler için de kullanılabilir ve uygulanabilir olduğu gösterilmiştir.

References

  • Akbardoost, J., Rastin, A. 2015, "Comprehensive data for calculating the higher order terms of crack tip stress field in disk-type specimens under mixed mode loading", Theoretical and Applied Fracture Mechanics, 76, 75-90.
  • Aliha, M. R. M., Ayatollahi, M. R., Kharazi, B. 2009, "Numerical and experimental investigations of mixed mode fracture in granite using four-point-bend specimen", In Damage and fracture mechanics (pp. 275-283). Springer, Dordrecht.
  • Aliha, M. R. M., Ayatollahi, M. R. 2012, "Analysis of fracture initiation angle in some cracked ceramics using the generalized maximum tangential stress criterion", International Journal of Solids and Structures, 49(13), 1877-1883.
  • Aliha, M. R. M., Ayatollahi, M. R., Akbardoost, J. 2012, "Typical upper bound–lower bound mixed mode fracture resistance envelopes for rock material", Rock mechanics and rock engineering, 45(1), 65-74.
  • Aliha, M. R. M., Hosseinpour, G. R., Ayatollahi, M. R. 2013, "Application of cracked triangular specimen subjected to three-point bending for investigating fracture behavior of rock materials", Rock mechanics and rock engineering, 46(5), 1023-1034.
  • Aliha, M. M., Behbahani, H., Fazaeli, H., Rezaifar, M. H. 2014, "Study of characteristic specification on mixed mode fracture toughness of asphalt mixtures", Construction and Building Materials, 54, 623- 635.
  • Al-Shayea, N. A. 2005, "Crack propagation trajectories for rocks under mixed mode I–II fracture", Engineering Geology, 81(1), 84-97.
  • Arcan, M., Hashin, Z. A., Voloshin, A. 1978, "A method to produce uniform plane-stress states with applications to fiber-reinforced materials", Experimental mechanics, 18(4), 141-146.
  • Ayatollahi, M. R., Aliha, M. R. M., Hassani, M. M. 2006, "Mixed mode brittle fracture in PMMA—an experimental study using SCB specimens", Materials Science and Engineering: A, 417(1-2), 348-356.
  • Ayatollahi, M. R., Aliha, M. R. M. 2008, "Mixed mode fracture analysis of polycrystalline graphite–a modified MTS criterion", Carbon, 46(10), 1302-1308.
  • Ayatollahi, M. R., Aliha, M. R. M. 2009, "Analysis of a new specimen for mixed mode fracture tests on brittle materials", Engineering Fracture Mechanics, 76(11), 1563-1573.
  • Ayatollahi, M. R., Moghaddam, M. R., Berto, F. 2015, "A generalized strain energy density criterion for mixed mode fracture analysis in brittle and quasi-brittle materials", Theoretical and Applied Fracture Mechanics, 79, 70-76.
  • Ayhan, A. O., Demir, O. 2016, "Investigation of mixed mode-I/II fracture problems-Part 2: evaluation and development of mixed mode-I/II fracture criteria", Frattura ed Integrità Strutturale, 10(35), 340- 349.
  • Chang, K. J. 1981, "On the maximum strain criterion—a new approach to the angled crack problem", Engineering Fracture Mechanics, 14(1), 107-124.
  • Chen, T., Hu, L., Zhang, N., Yu, Q. Q. 2018, "Boundary element analysis of fatigue behavior for CFRPstrengthened steel plates with center inclined cracks", Thin-Walled Structures, 125, 164-171.
  • Demir, O., Siriç, S., Ayhan, A. O., Lekesiz, H. 2016, "Investigation of mixed mode-I/II fracture problems- Part 1: computational and experimental analyses", Frattura ed Integrità Strutturale, 10(35), 330- 339.
  • Demir, O., Ayhan, A. O., İriç, S. 2017, "A new specimen for mixed mode-I/II fracture tests: Modeling, experiments and criteria development", Engineering Fracture Mechanics, 178, 457-476.
  • Demir, O., Ayhan, A. O., İriç, S., Lekesiz, H. 2018, "Evaluation of mixed mode-I/II criteria for fatigue crack propagation using experiments and modeling", Chinese Journal of Aeronautics, 31(7), 1525-1534.
  • Erdoğan, F., Sih, G. C. 1963, "On the crack extension in plates under plane loading and transverse shear", Journal of basic engineering, 85(4), 519-525.
  • Gouda, P. S., Kodancha, K. G., Siddaramaiah, D. J. 2013, "Experimental and numerical investigations on fracture behavior of high silica glass/satin textile fiber reinforced hybrid polymer composites", Adv. Mater. Lett., 4(11), 827-835.
  • Hernandez-Gomez, L. H., Sauceda-Meza, I., Urriolagoitia-Calderón, G., Balankin, A. S., Susarrey, O. 2004, "Evaluation of crack initiation angle under mixed mode loading at diverse strain rates", Theoretical and Applied Fracture Mechanics, 42(1), 53-61.
  • Hou, C., Jin, X., Fan, X., Xu, R., Wang, Z. 2019, "A generalized maximum energy release rate criterion for mixed mode fracture analysis of brittle and quasi-brittle materials", Theoretical and Applied Fracture Mechanics, 100, 78-85.
  • Hussain, M. A., Pu, S. L., Underwood, J. 1974, "Strain energy release rate for a crack under combined mode I and mode II", In Fracture analysis: Proceedings of the 1973 national symposium on fracture mechanics, part II. ASTM International.
  • Jiang, H., Gao, X., & Srivatsan, T. S. (2009). Predicting the influence of overload and loading mode on fatigue crack growth: a numerical approach using irreversible cohesive elements. Finite Elements in Analysis and Design, 45(10), 675-685.
  • Katanchi, B., Choupani, N., Khalil-Allafi, J., Tavangar, R., Baghani, M. 2018, "Mixed-mode fracture of a superelastic NiTi alloy: Experimental and numerical investigations", Engineering Fracture Mechanics, 190, 273-287.
  • Kim, C. S., Chung, K. W. 2012, "A study on fatigue crack propagation of rail steel under constant and mixed mode variable amplitude loadings", International Journal of Railway, 5(2), 71-76.
  • Koo, J. M., Choy, Y. S. 1991, "A new mixed mode fracture criterion: maximum tangential strain energy density criterion", Engineering fracture mechanics, 39(3), 443-449.
  • Marsavina, L., Sadowski, T., Knec, M. 2013, "Crack propagation paths in four point bend Aluminium– PMMA specimens", Engineering Fracture Mechanics, 108, 139-151.
  • Mirsayar, M. M. 2015, "Mixed mode fracture analysis using extended maximum tangential strain criterion", Materials & Design, 86, 941-947.
  • Mirsayar, M. M., Joneidi, V. A., Petrescu, R. V. V., Petrescu, F. I. T., Berto, F. 2017, "Extended MTSN criterion for fracture analysis of soda lime glass", Engineering Fracture Mechanics, 178, 50-59.
  • Mousavi, S. S., Aliha, M. R. M., Imani, D. M. 2020, "On the use of edge cracked short bend beam specimen for PMMA fracture toughness testing under mixed-mode I/II", Polymer Testing, 81, 106199.
  • Nuismer, R. J. 1975, "An energy release rate criterion for mixed mode fracture", International journal of fracture, 11(2), 245-250.
  • Paris, P. C., Erdogan F. 1963, “A Critical Analysis of Crack Propagation Laws”, J. Basic Eng. Dec 1963, 85(4): 528-533.
  • Paris, P. C., Gomez, M. P., Anderson, W. E. 1961, "A rational analytic theory of fatigue", The trend in engineering, 13, 9.
  • Patle, V., Bhadauria, S. S., Jain, A. 2012, "Analysis of Crack Tip Opening Displacement under Mixed Mode Fracture Using FEM Technique", IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 3, 27-34.
  • Pook, L. P. 1989, "The significance of mode I branch cracks for mixed mode fatigue crack growth threshold behaviour", In ICBMFF2.
  • Richard, H. A., Benitz, K. 1983, "A loading device for the creation of mixed mode in fracture mechanics", International Journal of Fracture, 22(2), R55-R58.
  • Richard, H. A. 1985, "Fracture mechanical predictions for cracks with superimposed normal and shear loading", Dusseldorf: VDI-Verlag.
  • Saghafi, H., Ayatollahi, M. R., Sistaninia, M. 2010, "A modified MTS criterion (MMTS) for mixed-mode fracture toughness assessment of brittle materials", Materials Science and Engineering: A, 527(21- 22), 5624-5630.
  • Sajith, S., Shukla, S. S., Murthy, K. S. R. K., Robi, P. S. 2019a, "Mixed mode fatigue crack growth studies in AISI 316 stainless steel", European Journal of Mechanics-A/Solids, 103898.
  • Sajith, S., Murthy, K. S. R. K., Robi, P. S. 2019b, Mixed mode fatigue crack growth studies of crack emanating from circular hole", In AIP Conference Proceedings (Vol. 2200, No. 1, p. 020041). AIP Publishing.
  • Sajith, S., Murthy, K. S. R. K., Robi, P. S. 2020, "Experimental and numerical investigation of mixed mode fatigue crack growth models in aluminum 6061-T6", International Journal of Fatigue, 130, 105285.
  • Sander, M., Richard, H. A. 2005, "Finite element analysis of fatigue crack growth with interspersed mode I and mixed mode overloads", International Journal of Fatigue, 27(8), 905-913.
  • Sander, M., & Richard, H. A. (2006). Experimental and numerical investigations on the influence of the loading direction on the fatigue crack growth. International Journal of Fatigue, 28(5-6), 583-591.
  • Seed, G. M., & Nowell, D. (1994). Use of the distributed dislocations method to determine the T‐stress. Fatigue & Fracture of Engineering Materials & Structures, 17(5), 605-618.
  • Seitl, S., Miarka, P., Bílek, V. 2018, "The mixed-mode fracture resistance of C 50/60 and its suitability for use in precast elements as determined by the Brazilian disc test and three-point bending specimens", Theoretical and Applied Fracture Mechanics, 97, 108-119.
  • Sih, G. C., Macdonald, B. 1974, "Fracture mechanics applied to engineering problems-strain energy density fracture criterion", Engineering Fracture Mechanics, 6(2), 361-386.
  • Tanaka, K. 1974, "Fatigue crack propagation from a crack inclined to the cyclic tensile axis", Engineering Fracture Mechanics, 6(3), 493-507.
  • Zabihi, M., Ayatollahi, M. R., Rezaie, H. R. 2018, "Mixed-mode fracture of synthesized nanocrystalline forsterite for biomedical applications", Theoretical and Applied Fracture Mechanics, 94, 173-180.
  • Zhao, J., Guo, W. 2012, "Three-parameter K–T–Tz characterization of the crack-tip fields in compacttension- shear specimens", Engineering Fracture Mechanics, 92, 72-88.

Prediction of Fatigue Behavior of Steel Plate with Inclined Crack Using Different Damage Models

Year 2020, , 586 - 600, 03.09.2020
https://doi.org/10.36306/konjes.684071

Abstract

Cracks or fracture problems are encountered in many engineering structures and
applications, due to many parameters such as material, manufacturing method, environmental factors or
loading types affecting the structure. Especially in some critical structures where high technology is
needed and research and development expenditures are high, these problems may become extremely vital.
These cracks can remain in the structure until a certain safe size or sometimes with a sudden fracture may
cause serious financial losses, leading to serious accidents and even in some cases may cause loss of lives.
To prevent such negative situations and to ensure that cracked structures function safely i.e., to determine
fail-safe/remaining life assessment of a damaged structure, fracture parameters must be calculated
accurately and precisely. In addition, knowing how the cracked structure will behave under different
loading conditions and accordingly improving the design during the design stage enable minimization of
possible damages. In this study, the applicability of the recently developed Demir and Ayhan damage
model for estimating the fracture and crack propagation behavior of cracked structures subjected to mixed
mode loads was evaluated together with the existing damage models in the literature. It is shown that the
Demir and Ayhan damage model, which was developed using aluminum test specimens having different
geometries and dimensions, can also be used and applied for steel specimens.

References

  • Akbardoost, J., Rastin, A. 2015, "Comprehensive data for calculating the higher order terms of crack tip stress field in disk-type specimens under mixed mode loading", Theoretical and Applied Fracture Mechanics, 76, 75-90.
  • Aliha, M. R. M., Ayatollahi, M. R., Kharazi, B. 2009, "Numerical and experimental investigations of mixed mode fracture in granite using four-point-bend specimen", In Damage and fracture mechanics (pp. 275-283). Springer, Dordrecht.
  • Aliha, M. R. M., Ayatollahi, M. R. 2012, "Analysis of fracture initiation angle in some cracked ceramics using the generalized maximum tangential stress criterion", International Journal of Solids and Structures, 49(13), 1877-1883.
  • Aliha, M. R. M., Ayatollahi, M. R., Akbardoost, J. 2012, "Typical upper bound–lower bound mixed mode fracture resistance envelopes for rock material", Rock mechanics and rock engineering, 45(1), 65-74.
  • Aliha, M. R. M., Hosseinpour, G. R., Ayatollahi, M. R. 2013, "Application of cracked triangular specimen subjected to three-point bending for investigating fracture behavior of rock materials", Rock mechanics and rock engineering, 46(5), 1023-1034.
  • Aliha, M. M., Behbahani, H., Fazaeli, H., Rezaifar, M. H. 2014, "Study of characteristic specification on mixed mode fracture toughness of asphalt mixtures", Construction and Building Materials, 54, 623- 635.
  • Al-Shayea, N. A. 2005, "Crack propagation trajectories for rocks under mixed mode I–II fracture", Engineering Geology, 81(1), 84-97.
  • Arcan, M., Hashin, Z. A., Voloshin, A. 1978, "A method to produce uniform plane-stress states with applications to fiber-reinforced materials", Experimental mechanics, 18(4), 141-146.
  • Ayatollahi, M. R., Aliha, M. R. M., Hassani, M. M. 2006, "Mixed mode brittle fracture in PMMA—an experimental study using SCB specimens", Materials Science and Engineering: A, 417(1-2), 348-356.
  • Ayatollahi, M. R., Aliha, M. R. M. 2008, "Mixed mode fracture analysis of polycrystalline graphite–a modified MTS criterion", Carbon, 46(10), 1302-1308.
  • Ayatollahi, M. R., Aliha, M. R. M. 2009, "Analysis of a new specimen for mixed mode fracture tests on brittle materials", Engineering Fracture Mechanics, 76(11), 1563-1573.
  • Ayatollahi, M. R., Moghaddam, M. R., Berto, F. 2015, "A generalized strain energy density criterion for mixed mode fracture analysis in brittle and quasi-brittle materials", Theoretical and Applied Fracture Mechanics, 79, 70-76.
  • Ayhan, A. O., Demir, O. 2016, "Investigation of mixed mode-I/II fracture problems-Part 2: evaluation and development of mixed mode-I/II fracture criteria", Frattura ed Integrità Strutturale, 10(35), 340- 349.
  • Chang, K. J. 1981, "On the maximum strain criterion—a new approach to the angled crack problem", Engineering Fracture Mechanics, 14(1), 107-124.
  • Chen, T., Hu, L., Zhang, N., Yu, Q. Q. 2018, "Boundary element analysis of fatigue behavior for CFRPstrengthened steel plates with center inclined cracks", Thin-Walled Structures, 125, 164-171.
  • Demir, O., Siriç, S., Ayhan, A. O., Lekesiz, H. 2016, "Investigation of mixed mode-I/II fracture problems- Part 1: computational and experimental analyses", Frattura ed Integrità Strutturale, 10(35), 330- 339.
  • Demir, O., Ayhan, A. O., İriç, S. 2017, "A new specimen for mixed mode-I/II fracture tests: Modeling, experiments and criteria development", Engineering Fracture Mechanics, 178, 457-476.
  • Demir, O., Ayhan, A. O., İriç, S., Lekesiz, H. 2018, "Evaluation of mixed mode-I/II criteria for fatigue crack propagation using experiments and modeling", Chinese Journal of Aeronautics, 31(7), 1525-1534.
  • Erdoğan, F., Sih, G. C. 1963, "On the crack extension in plates under plane loading and transverse shear", Journal of basic engineering, 85(4), 519-525.
  • Gouda, P. S., Kodancha, K. G., Siddaramaiah, D. J. 2013, "Experimental and numerical investigations on fracture behavior of high silica glass/satin textile fiber reinforced hybrid polymer composites", Adv. Mater. Lett., 4(11), 827-835.
  • Hernandez-Gomez, L. H., Sauceda-Meza, I., Urriolagoitia-Calderón, G., Balankin, A. S., Susarrey, O. 2004, "Evaluation of crack initiation angle under mixed mode loading at diverse strain rates", Theoretical and Applied Fracture Mechanics, 42(1), 53-61.
  • Hou, C., Jin, X., Fan, X., Xu, R., Wang, Z. 2019, "A generalized maximum energy release rate criterion for mixed mode fracture analysis of brittle and quasi-brittle materials", Theoretical and Applied Fracture Mechanics, 100, 78-85.
  • Hussain, M. A., Pu, S. L., Underwood, J. 1974, "Strain energy release rate for a crack under combined mode I and mode II", In Fracture analysis: Proceedings of the 1973 national symposium on fracture mechanics, part II. ASTM International.
  • Jiang, H., Gao, X., & Srivatsan, T. S. (2009). Predicting the influence of overload and loading mode on fatigue crack growth: a numerical approach using irreversible cohesive elements. Finite Elements in Analysis and Design, 45(10), 675-685.
  • Katanchi, B., Choupani, N., Khalil-Allafi, J., Tavangar, R., Baghani, M. 2018, "Mixed-mode fracture of a superelastic NiTi alloy: Experimental and numerical investigations", Engineering Fracture Mechanics, 190, 273-287.
  • Kim, C. S., Chung, K. W. 2012, "A study on fatigue crack propagation of rail steel under constant and mixed mode variable amplitude loadings", International Journal of Railway, 5(2), 71-76.
  • Koo, J. M., Choy, Y. S. 1991, "A new mixed mode fracture criterion: maximum tangential strain energy density criterion", Engineering fracture mechanics, 39(3), 443-449.
  • Marsavina, L., Sadowski, T., Knec, M. 2013, "Crack propagation paths in four point bend Aluminium– PMMA specimens", Engineering Fracture Mechanics, 108, 139-151.
  • Mirsayar, M. M. 2015, "Mixed mode fracture analysis using extended maximum tangential strain criterion", Materials & Design, 86, 941-947.
  • Mirsayar, M. M., Joneidi, V. A., Petrescu, R. V. V., Petrescu, F. I. T., Berto, F. 2017, "Extended MTSN criterion for fracture analysis of soda lime glass", Engineering Fracture Mechanics, 178, 50-59.
  • Mousavi, S. S., Aliha, M. R. M., Imani, D. M. 2020, "On the use of edge cracked short bend beam specimen for PMMA fracture toughness testing under mixed-mode I/II", Polymer Testing, 81, 106199.
  • Nuismer, R. J. 1975, "An energy release rate criterion for mixed mode fracture", International journal of fracture, 11(2), 245-250.
  • Paris, P. C., Erdogan F. 1963, “A Critical Analysis of Crack Propagation Laws”, J. Basic Eng. Dec 1963, 85(4): 528-533.
  • Paris, P. C., Gomez, M. P., Anderson, W. E. 1961, "A rational analytic theory of fatigue", The trend in engineering, 13, 9.
  • Patle, V., Bhadauria, S. S., Jain, A. 2012, "Analysis of Crack Tip Opening Displacement under Mixed Mode Fracture Using FEM Technique", IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 3, 27-34.
  • Pook, L. P. 1989, "The significance of mode I branch cracks for mixed mode fatigue crack growth threshold behaviour", In ICBMFF2.
  • Richard, H. A., Benitz, K. 1983, "A loading device for the creation of mixed mode in fracture mechanics", International Journal of Fracture, 22(2), R55-R58.
  • Richard, H. A. 1985, "Fracture mechanical predictions for cracks with superimposed normal and shear loading", Dusseldorf: VDI-Verlag.
  • Saghafi, H., Ayatollahi, M. R., Sistaninia, M. 2010, "A modified MTS criterion (MMTS) for mixed-mode fracture toughness assessment of brittle materials", Materials Science and Engineering: A, 527(21- 22), 5624-5630.
  • Sajith, S., Shukla, S. S., Murthy, K. S. R. K., Robi, P. S. 2019a, "Mixed mode fatigue crack growth studies in AISI 316 stainless steel", European Journal of Mechanics-A/Solids, 103898.
  • Sajith, S., Murthy, K. S. R. K., Robi, P. S. 2019b, Mixed mode fatigue crack growth studies of crack emanating from circular hole", In AIP Conference Proceedings (Vol. 2200, No. 1, p. 020041). AIP Publishing.
  • Sajith, S., Murthy, K. S. R. K., Robi, P. S. 2020, "Experimental and numerical investigation of mixed mode fatigue crack growth models in aluminum 6061-T6", International Journal of Fatigue, 130, 105285.
  • Sander, M., Richard, H. A. 2005, "Finite element analysis of fatigue crack growth with interspersed mode I and mixed mode overloads", International Journal of Fatigue, 27(8), 905-913.
  • Sander, M., & Richard, H. A. (2006). Experimental and numerical investigations on the influence of the loading direction on the fatigue crack growth. International Journal of Fatigue, 28(5-6), 583-591.
  • Seed, G. M., & Nowell, D. (1994). Use of the distributed dislocations method to determine the T‐stress. Fatigue & Fracture of Engineering Materials & Structures, 17(5), 605-618.
  • Seitl, S., Miarka, P., Bílek, V. 2018, "The mixed-mode fracture resistance of C 50/60 and its suitability for use in precast elements as determined by the Brazilian disc test and three-point bending specimens", Theoretical and Applied Fracture Mechanics, 97, 108-119.
  • Sih, G. C., Macdonald, B. 1974, "Fracture mechanics applied to engineering problems-strain energy density fracture criterion", Engineering Fracture Mechanics, 6(2), 361-386.
  • Tanaka, K. 1974, "Fatigue crack propagation from a crack inclined to the cyclic tensile axis", Engineering Fracture Mechanics, 6(3), 493-507.
  • Zabihi, M., Ayatollahi, M. R., Rezaie, H. R. 2018, "Mixed-mode fracture of synthesized nanocrystalline forsterite for biomedical applications", Theoretical and Applied Fracture Mechanics, 94, 173-180.
  • Zhao, J., Guo, W. 2012, "Three-parameter K–T–Tz characterization of the crack-tip fields in compacttension- shear specimens", Engineering Fracture Mechanics, 92, 72-88.
There are 50 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Oğuzhan Demir 0000-0003-1947-2617

Publication Date September 3, 2020
Submission Date February 3, 2020
Acceptance Date March 15, 2020
Published in Issue Year 2020

Cite

IEEE O. Demir, “EĞİK ÇATLAK İÇEREN ÇELİK PLAKANIN YORULMA DAVRANIŞININ FARKLI HASAR MODELLERİYLE TAHMİNİ”, KONJES, vol. 8, no. 3, pp. 586–600, 2020, doi: 10.36306/konjes.684071.