Research Article
BibTex RIS Cite

ALÜMİNYUM HİDROKSİT KRİSTALİZASYONU ÜZERİNE LİTYUM SAFSIZLIĞININ ETKİSİ

Year 2020, , 957 - 969, 01.12.2020
https://doi.org/10.36306/konjes.754567

Abstract

Bu çalışmada, farklı modülb değerlerine (1,35; 1,41; 1,45; 1,49; 1,8; 2,0; 2,25; 2,50) sahip sodyum alüminat çözeltilerinin nükleasyon davranışları incelenmiştir. Bu amaçla, çözeltiye verilen farklı aşırı doygunluk değeri (1,321-1,785) ve farklı derişimde (5-20 ppm) lityum (Li) varlığı için bekleme zamanı ölçümleri yapılmıştır. Deneysel çalışmalar sonucu, kritik serbest enerji değişimi, kritik nüklei yarıçapı, kritik nükleide yer alan molekül sayısı ve nükleasyon hızı hesaplanmıştır. Katkısız sodyum alüminat çözeltisi için bekleme zamanının, farklı aşırı doygunluk değerlerine bağlı olarak 100-400 dk. aralığında değiştiği belirlenmiştir. Lityum varlığında ise, en yüksek bekleme zamanı 10 ppm lityum derişimi için 20 dk. olarak tespit edilmiştir. Klasik nükleasyon teorisine göre yapılan hesaplamalar sonucu, lityum varlığında, katkısız ortama kıyasla, kritik nüklei yarıçapının düştüğü, kritik nükleideki molekül sayısının azaldığı ve nükleasyon hızının arttığı belirlenmiştir. 5 ppm lityum katkısı için, katkısız ortama kıyasla, nükleasyon hızındaki artışın yaklaşık 100 kat, 20 ppm lityum katkısı için ise yaklaşık olarak 39 kat olduğu belirlenmiştir. Lityum varlığında, farklı modülb değerlerindeki sodyum alüminat çözeltilerinin bekleme zamanlarının düşük ve yüksek modülb değerine sahip çözeltiler için 6 – 7 dk. aralığında değiştiği tespit edilmiştir. Modülb 1,49 ve 1,8 için ise maksimum 10 dk’lık bekleme süreleri elde edilmiştir.

Supporting Institution

Selçuk Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

17201070

Thanks

Bu çalışma, Selçuk Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından desteklenmiştir. Proje No: 17201070.

References

  • AddaiMensah, J., 1997, “Surface and structural characteristics of gibbsite precipitated from pure, synthetic Bayer liquor”, Miner. Eng, Vol. 10, No. 1, pp. 81-96.
  • Baygül, M., 2017, Eti Alüminyum Fabrikası Alüminyum Hidroksit Üretim Prosesinden Lityumun Ayrılması, Yüksek Lisans Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü,Konya.
  • Bhattacharya, I. N., Pradhan, J. K., Gochhayat, P. K. ve Das, S. C., 2002, “Factors controlling precipitation of finer size alumina trihydrate”, Int J Miner Process, Vol. 65, No. 2, pp. 109-124.
  • Blanks, K. A., 2000, “Novel synthesis of gibbsite by laser-stimulated nucleation in supersaturated sodium aluminate solutions”, J Crystal Growth, Vol. 220, No. 4, pp. 572-578.
  • Brown, N., 1972, “Secondary nucleation of aluminium trihydroxide in seeded caustic aluminate solutions”, J Crystal Growth, Vol. 16, No. 2, pp. 163-169.
  • Ceyhan, A. A., Baytar, O. ve Pehlivan, E., 2014, “Effects of different gas phases and gas bubbles on the nucleation kinetics”, Acta Chim. Slov., Vol. 61, No. 1, pp. 391-397.
  • Harris, D. R., Keir, R. I., Prestidge, C. A. ve Thomas, J. C., 1999, “A dynamic light scattering investigation of nucleation and growth in supersaturated alkaline sodium aluminate solutions (synthetic Bayer liquors)”, Colloid Surf A Physicochem Eng Asp, Vol. 154, No. 3, pp. 343-352.
  • Hayrapetyan, S., Mangasaryan, L., Tovmasyan, M. ve Khachatryan, H., 2006, “Precipitation of aluminum hydroxide from sodium aluminate, by treatment with formalin, and preparation of aluminum oxide”, Acta Chromatogr., Vol. 16, pp. 192.
  • Kirchner, S., Teychene, S., Boualleg, M., Dandeu, A., Frances, C. ve Biscans, B., 2015, Effect of precipitation process parameters on boehmite properties: In situ optical monitoring, Chem. Eng. J., Vol. 280, pp. 658-669.
  • Li, H., Addai-Mensah, J., Thomas, J. C. ve Gerson, A. R., 2005a, “The influence of Al (III) supersaturation and NaOH concentration on the rate of crystallization of Al(OH)3 precursor particles from sodium aluminate solutions”, J. Colloid Interface Sci., Vol. 286, No. 2, pp. 511-519.
  • Li, H., Lu, H. X., Wang, S., Jia, J. F., Sun, H. W. ve Hu, X., 2009a, “Preparation of a nano-sized alpha-Al2O3 powder from a supersaturated sodium aluminate solution”, Ceram. Int., Vol. 35, No. 2, pp. 901- 904.
  • Li, H. X., Addai-Mensah, J., Thomas, J. C. ve Gerson, A. R., 2005b, “The crystallization mechanism of Al(OH)3 from sodium aluminate solutions”, J Crystal Growth, Vol. 279, No. 3-4, pp. 508-520.
  • Li, J., Yin, Z. L., Ding, Z. Y., Liu, W., Wei, T. R., Chen, Q. Y. ve Zhang, W. Y., 2016, “Homogeneous nucleation of Al(OH)3 crystals from supersaturated sodium aluminate solution investigated by in situ conductivity”, Hydrometallurgy, Vol. 163, pp. 77-82.
  • Li, Y., Zhang, Y. F., Yang, C. ve Zhang, Y., 2009b, “Precipitating sandy aluminium hydroxide from sodium aluminate solution by the neutralization of sodium bicarbonate”, Hydrometallurgy, Vol. 98, No. 1- 2, pp. 52-57.
  • Liu, G. H., Li, Z., Qi, T. G., Zhou, Q. S., Peng, Z. H. ve Li, X. B., 2015, “Continuous changes in electrical conductivity of sodium aluminate solution in seeded precipitation”, T Nonferr Metal Soc, Vol. 25, No. 12, pp. 4160-4166.
  • Mejdell, G. T. ve Kjolberg, S. A., 1977, “Process for precipitation of aluminum hydroxide from aluminate solution”, Google Patents: US4049773A.
  • O'hare, D. M., Fogg, A. M. ve Parkinson, G. M., 2002, Process for removing impurities from bauxite, Google Patents: US6479024B1.
  • Rasmussen, D. H., Brancewicz, C., Das, B., Graeffe, M., Rosenholm, J. ve Toscano, A., 2001, “Precipitation of nanoscale aluminum hydroxide particles”, J Disper Sci Technol, Vol. 22, No. 5, pp. 491-498.
  • Rossiter, D., Fawell, P., Ilievski, D. ve Parkinson, G., 1998, “Investigation of the unseeded nucleation of gibbsite, Al (OH) 3, from synthetic bayer liquors”, J Crystal Growth, Vol. 191, No. 3, pp. 525-536.
  • Ruan, S., Shi, L. N., Li, J. ve Gerson, A. R., 2016, “Mechanism and kinetics of gibbsite-seeded sodium aluminosilicate crystallisation from synthetic spent Bayer liquor”, Hydrometallurgy, Vol. 163, pp. 1-8.
  • Skoufadis, C., Panias, D. ve Paspaliaris, I., 2003, “Kinetics of boehmite precipitation from supersaturated sodium aluminate solutions”, Hydrometallurgy, Vol. 68, No. 1-3, pp. 57-68.
  • Veesler, S. ve Boistelle, R., 1993, “About supersaturation and growth rates of hydrargillite Al (OH)3 in alumina caustic solutions”, J Crystal Growth, Vol. 130, No. 3-4, pp. 411-415.
  • Wilhelmy, R. B., 1990, "Control of form of crystal precipitation of aluminum hydroxide using cosolvents and varying caustic concentration, Google Patents: US4900537A.
  • Yamada, K., Harato, T., Kato, H. ve Shiozaki, Y., 1982, Process for producing coarse grains of aluminum hydroxide, Google Patents: US4311486A.
  • Zeng, J. S., Yin, Z. L. ve Chen, Q. Y., 2007, “Intensification of precipitation of gibbsite from seeded caustic sodium aluminate liquor by seed activation and addition of crown ether”, Hydrometallurgy, Vol. 89, No. 1-2, pp. 107-116.
  • Zhang, Y., Zheng, S. L., Du, H., Xu, H. B., Wang, S. N. ve Zhang, Y., 2009, “Improved precipitation of gibbsite from sodium aluminate solution by adding methanol”, Hydrometallurgy, Vol. 98, No. 1-2, pp. 38-44.

Effect of Lithium Impurity upon Aluminum Hydroxide Crystallization

Year 2020, , 957 - 969, 01.12.2020
https://doi.org/10.36306/konjes.754567

Abstract

In this study, the nucleation behavior of sodium aluminate solutions having different modulb values were investigated. For this aim, induction period measurements were carried out for different supersaturation ratio (1.321-1.785) and different lithium concentrations (5-20 ppm). As a result of experimental studies, critical free energy exchange, critical nuclei radius, critical nuclei number in molecule and nucleation rate were calculated. It was determined that the induction time for the pure sodium aluminate solution varied between 100-400 minutes for different supersaturation ratio. In the presence of lithium ranging from 5 to 20 ppm, the highest induction time was determined as 20 min. for 10 ppm lithium. Based on the classical nucleation theory, it was determined the critical nuclei radius decreased, the number of molecules in the critical nuclei decreased, and the nucleation rate increased, to compare to the pure solution in the existence of lithium. For the 5 ppm Li additive, it was determined that the increase in nucleation rate increased approximately 100 times and the increase of 20 ppm Li increased approximately 39 times compared to the pure solution. It has been found that the induction times of sodium aluminate solutions in different module B values vary in the range of 6-7 minutes for low and high modulus solutions in the presence of lithium. For modules 1.49 and 1.8, a maximum of 10 minutes of induction times were obtained.

Project Number

17201070

References

  • AddaiMensah, J., 1997, “Surface and structural characteristics of gibbsite precipitated from pure, synthetic Bayer liquor”, Miner. Eng, Vol. 10, No. 1, pp. 81-96.
  • Baygül, M., 2017, Eti Alüminyum Fabrikası Alüminyum Hidroksit Üretim Prosesinden Lityumun Ayrılması, Yüksek Lisans Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü,Konya.
  • Bhattacharya, I. N., Pradhan, J. K., Gochhayat, P. K. ve Das, S. C., 2002, “Factors controlling precipitation of finer size alumina trihydrate”, Int J Miner Process, Vol. 65, No. 2, pp. 109-124.
  • Blanks, K. A., 2000, “Novel synthesis of gibbsite by laser-stimulated nucleation in supersaturated sodium aluminate solutions”, J Crystal Growth, Vol. 220, No. 4, pp. 572-578.
  • Brown, N., 1972, “Secondary nucleation of aluminium trihydroxide in seeded caustic aluminate solutions”, J Crystal Growth, Vol. 16, No. 2, pp. 163-169.
  • Ceyhan, A. A., Baytar, O. ve Pehlivan, E., 2014, “Effects of different gas phases and gas bubbles on the nucleation kinetics”, Acta Chim. Slov., Vol. 61, No. 1, pp. 391-397.
  • Harris, D. R., Keir, R. I., Prestidge, C. A. ve Thomas, J. C., 1999, “A dynamic light scattering investigation of nucleation and growth in supersaturated alkaline sodium aluminate solutions (synthetic Bayer liquors)”, Colloid Surf A Physicochem Eng Asp, Vol. 154, No. 3, pp. 343-352.
  • Hayrapetyan, S., Mangasaryan, L., Tovmasyan, M. ve Khachatryan, H., 2006, “Precipitation of aluminum hydroxide from sodium aluminate, by treatment with formalin, and preparation of aluminum oxide”, Acta Chromatogr., Vol. 16, pp. 192.
  • Kirchner, S., Teychene, S., Boualleg, M., Dandeu, A., Frances, C. ve Biscans, B., 2015, Effect of precipitation process parameters on boehmite properties: In situ optical monitoring, Chem. Eng. J., Vol. 280, pp. 658-669.
  • Li, H., Addai-Mensah, J., Thomas, J. C. ve Gerson, A. R., 2005a, “The influence of Al (III) supersaturation and NaOH concentration on the rate of crystallization of Al(OH)3 precursor particles from sodium aluminate solutions”, J. Colloid Interface Sci., Vol. 286, No. 2, pp. 511-519.
  • Li, H., Lu, H. X., Wang, S., Jia, J. F., Sun, H. W. ve Hu, X., 2009a, “Preparation of a nano-sized alpha-Al2O3 powder from a supersaturated sodium aluminate solution”, Ceram. Int., Vol. 35, No. 2, pp. 901- 904.
  • Li, H. X., Addai-Mensah, J., Thomas, J. C. ve Gerson, A. R., 2005b, “The crystallization mechanism of Al(OH)3 from sodium aluminate solutions”, J Crystal Growth, Vol. 279, No. 3-4, pp. 508-520.
  • Li, J., Yin, Z. L., Ding, Z. Y., Liu, W., Wei, T. R., Chen, Q. Y. ve Zhang, W. Y., 2016, “Homogeneous nucleation of Al(OH)3 crystals from supersaturated sodium aluminate solution investigated by in situ conductivity”, Hydrometallurgy, Vol. 163, pp. 77-82.
  • Li, Y., Zhang, Y. F., Yang, C. ve Zhang, Y., 2009b, “Precipitating sandy aluminium hydroxide from sodium aluminate solution by the neutralization of sodium bicarbonate”, Hydrometallurgy, Vol. 98, No. 1- 2, pp. 52-57.
  • Liu, G. H., Li, Z., Qi, T. G., Zhou, Q. S., Peng, Z. H. ve Li, X. B., 2015, “Continuous changes in electrical conductivity of sodium aluminate solution in seeded precipitation”, T Nonferr Metal Soc, Vol. 25, No. 12, pp. 4160-4166.
  • Mejdell, G. T. ve Kjolberg, S. A., 1977, “Process for precipitation of aluminum hydroxide from aluminate solution”, Google Patents: US4049773A.
  • O'hare, D. M., Fogg, A. M. ve Parkinson, G. M., 2002, Process for removing impurities from bauxite, Google Patents: US6479024B1.
  • Rasmussen, D. H., Brancewicz, C., Das, B., Graeffe, M., Rosenholm, J. ve Toscano, A., 2001, “Precipitation of nanoscale aluminum hydroxide particles”, J Disper Sci Technol, Vol. 22, No. 5, pp. 491-498.
  • Rossiter, D., Fawell, P., Ilievski, D. ve Parkinson, G., 1998, “Investigation of the unseeded nucleation of gibbsite, Al (OH) 3, from synthetic bayer liquors”, J Crystal Growth, Vol. 191, No. 3, pp. 525-536.
  • Ruan, S., Shi, L. N., Li, J. ve Gerson, A. R., 2016, “Mechanism and kinetics of gibbsite-seeded sodium aluminosilicate crystallisation from synthetic spent Bayer liquor”, Hydrometallurgy, Vol. 163, pp. 1-8.
  • Skoufadis, C., Panias, D. ve Paspaliaris, I., 2003, “Kinetics of boehmite precipitation from supersaturated sodium aluminate solutions”, Hydrometallurgy, Vol. 68, No. 1-3, pp. 57-68.
  • Veesler, S. ve Boistelle, R., 1993, “About supersaturation and growth rates of hydrargillite Al (OH)3 in alumina caustic solutions”, J Crystal Growth, Vol. 130, No. 3-4, pp. 411-415.
  • Wilhelmy, R. B., 1990, "Control of form of crystal precipitation of aluminum hydroxide using cosolvents and varying caustic concentration, Google Patents: US4900537A.
  • Yamada, K., Harato, T., Kato, H. ve Shiozaki, Y., 1982, Process for producing coarse grains of aluminum hydroxide, Google Patents: US4311486A.
  • Zeng, J. S., Yin, Z. L. ve Chen, Q. Y., 2007, “Intensification of precipitation of gibbsite from seeded caustic sodium aluminate liquor by seed activation and addition of crown ether”, Hydrometallurgy, Vol. 89, No. 1-2, pp. 107-116.
  • Zhang, Y., Zheng, S. L., Du, H., Xu, H. B., Wang, S. N. ve Zhang, Y., 2009, “Improved precipitation of gibbsite from sodium aluminate solution by adding methanol”, Hydrometallurgy, Vol. 98, No. 1-2, pp. 38-44.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Ayhan Abdullah Ceyhan

Halil Temiz This is me

Project Number 17201070
Publication Date December 1, 2020
Submission Date June 18, 2020
Acceptance Date August 26, 2020
Published in Issue Year 2020

Cite

IEEE A. A. Ceyhan and H. Temiz, “ALÜMİNYUM HİDROKSİT KRİSTALİZASYONU ÜZERİNE LİTYUM SAFSIZLIĞININ ETKİSİ”, KONJES, vol. 8, no. 4, pp. 957–969, 2020, doi: 10.36306/konjes.754567.