Research Article
BibTex RIS Cite

TEK FREKANSLI GNSS ALICILARINDA KULLANILAN İYONOSFERİK ETKİ DÜZELTME MODELLERİNİN KARŞILAŞTIRILMASI

Year 2021, , 428 - 441, 01.06.2021
https://doi.org/10.36306/konjes.849391

Abstract

Uydularla konum belirleme ve navigasyon (GNSS) uygulamalarında, Seçimli Doğruluk Erişimi (SA: Selective Availability) gibi kasıtlı bozmalar haricinde, en önemli hata kaynaklarından birisi iyonosferdir.
İyonosferde atomlardan kopmuş serbest elektronların sayısı elektromanyetik dalgaların yayılmasını değiştirmeye yetecek kadar çoktur. İyonosferik etki, bu serbest elektronlar nedeniyle, uydu kod ölçülerinde gecikmeye, faz ölçülerinde ise hızlanmaya neden olmaktadırlar. Diğer taraftan iyonosferik etki frekans bağımlıdır. GNSS alıcılarının çok frekanslı olmasının en temel nedenlerinden birisi iyonosferik etkinin frekans bağımlı olması ve bu özellikten yararlanarak büyük oranda giderilebilmesidir.
Ancak, tek frekanslı alıcılarda iyonosferik etkinin bu yöntemle giderilmesi olanağı bulunmamakta, bunun yerine navigasyon mesajları içerisinde yayınlanan iyonosferik model katsayıları kullanılarak giderilebilmektedir. Bu bağlamda, genelde gerçek zamanlı uygulamalar ve tek frekanslı alıcılar için örneğin GPS navigasyon mesajlarında Klobuchar iyonosfer modeli katsayıları da yayınlanmaktadır. Bu model ile iyonosferik etkinin yaklaşık %50’sinin giderilebilmesi olanaklıdır. Diğer taraftan, Uluslararası Telekomünikasyon Birliği (ITU) tarafından günümüz uydu sistemleri ve tek frekanslı alıcılar için önerilen NeQuick modeli kullanılarak da iyonosferik etkiler %70 oranında giderilebilmektedir. Bu çalışmada, Klobuchar ve NeQuick modellerine ilişkin algoritmalar kullanılarak iyonosferik etki hesapları yapılmış ve sonuçlar karşılaştırılmıştır. Bu çalışma ile söz konusu model algoritmalarının, zaman içerisinde Türkiye’de de üretilmesinin kaçınılmaz olduğuna inanılan yerli ve millî tek frekanslı GNSS alıcı yazılımlarında gerçek zamanlı mutlak konum belirleme amaçlı olarak kolaylıkla uyarlanabileceği sonucuna ulaşılmıştır.

References

  • Aragon-Angel A., Orus, R., Hernandez-Pajares, M., Juan, J.M. ve Sanz J., 2006, “Preliminary NeQuick assessment for future single frequency users of Galileo”, in Proceedings of the 6th Geomatic Week, Barcelona, Spain.
  • Bidaine, B., Prieto-Cerdeira, R. ve Orus, R., 2006, “NeQuick: In-Depth Analysis and New Developments”, In Proceedings of the 3rd ESA Workshop on Satellite Navigation User Equipment Technologies NAVITEC, Noordwijk, The Netherlands.
  • Ciećko, A. ve Grunwald, G., 2020, “Klobuchar, NeQuick G,and EGNOS Ionospheric Models for GPS/EGNOS Single-Frequency Positioning under 6–12 September 2017 Space Weather Events”, Appl. Sci., 10, 1553; doi:10.3390/app10051553.
  • Dach R., Lutz, S., Walser, P. ve Fridez, P., 2015, ”Bernese GNSS Software Version 5.2”, Astronomical Institute, University of Bern.
  • Di Giovanni, G. ve Radicella, S.M., 1990,”An Analytical Model of the Electron Density Profile in the Ionosphere”, Adv. Space Res., 10 (11), 27-30.
  • EC, 2016, “European GNSS (Galileo) open service ionospheric correction algorithm for Galileo single frequency users”. European Commission.
  • Hoffmann-W.B., Lichtenegger, H., Wasle, E., 2008, “GNSS-Global Navigation Satellite Systems”, Springer-Verlag Wien, eISBN: 978-3-211-73017-1.
  • IS-GPS-200K, 2019, NAVSTAR GPS Space Segment/Navigation User Segment Interfaces.
  • ITU-R, 2019, "Ionospheric propagation data and prediction methods required for the design of satellite networks and systems", Recommendation ITU-R P.531-14.P Series Radio wave propagation.
  • Jin, R., Jin, S. ve Feng, G., 2012, ” M_DCB: MATLAB code for estimating GPS satellite and receiver differential code biases”, GPS Solution, 16, 541–548.
  • Kahveci, M., 1997, “Türkiye Koşullarında Yapılan GPS Gözlemlerinde Ortam Etkilerinn Araştırılması”, Doktora Tezi, İTÜ Fen Bilimleri Enstitüsü.
  • Kahveci M.,ve Yıldız F., 2018, ”GPS/GNSS Uydularla Konum Belirleme Sistemleri”, 10.basım, Nobel Yayıncılık, Ankara.
  • Klobuchar J.A., 1987, “Ionospheric time-delay algorithm for single-frequency GPS users”. IEEE Transactions on aerospace and electronic systems ;(3):325-331.
  • Klobuchar, J.A. ve Doherty, P.H., 1990, “The Statistics of Ionospheric Time Delay for GPS Ranging on L1.” Proceedings of the ION GPS-90, the 3rd International Technical Meeting of the Satellite Division of The Institute of Navigation, Colorado Springs, CO, 19-21 September, The Institute of Navigation, Washington, DC, pp.161-168.
  • Komjathy A., 1990, “Global Ionospheric Total Electron Content Mapping Using the Global Positioning System”, Technical report Nr.188, Department of Geodesy and Geomatics Engineering University of New Brunswick.
  • Naoki, A. ve Kazuaki, H., 1998, “Correction of ionospheric delay on GLONASS using the GPS navigation message”, In Proceedings of the ION GPS , Long Beach, CA, USA; pp. 667–671.
  • Orus-Perez R., 2017, “Ionospheric error contribution to GNSS single frequency navigation at the 2014 solar maximum”, J Geodesy 91(4):397–407.
  • OS SIS ICD-2006, "Galileo Open Service, Signal in Space Interface Control Document", European Space Agency.
  • Paakki, T., DellaRosa, F. ve Nurmi, J., 2015, “PVT Computation Issues in Mixed Galileo/GPS Reception In: Nurmi, J. Lohan, E. S. Sand, S. Hurkskainen, H.,eds. GALILEO Positioning Technology”, Springer, New York.
  • Piriz, R., Roldan, P., Golcz, R., Moriana, C. ve Leute, J., 2016, “Performance of the NeQuick G iono model for single-frequency GNSS timing applications”, European Frequency and Time Forum (EFTF), IEEE.
  • Prieto-Cerdeira R., Orus-Peres, R., Breeuwer, E., Lucas-Rodriguez, R. and Falcone, M., 2014, “Performance of the Galileo Single-Frequency Ionospheric Correction During In-Orbit Validation”, GPS world, 25(6), 53-58.
  • Rovira-Garcia, A., Ibanez-Segura, D., Orus-Perez, R., Juan, J.M., Sanz, J. and Gonzalez-Casado, G., 2020, “Assessing the quality of ionospheric models through GNSS positioning error: methodology and results”, GPS Solutions, 24:4.
  • Schaer S, 1999,” Mapping and predicting the earth’s ionosphere using global positioning system”, Doctoral dissertation, Astronomy Institute, University Bern, Switzerland.
  • Wolfgang R.D. ve Thaller, D., 2013, “IERS Annual Report, International Earth Rotation and Reference Systems Service”, Central Bureau. Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, 2014. 157 pp., ISBN 978-3-86482-073-1.
  • URL1: https://spawx.nwra.com/spawx/ssne-cycle.html , ziyaret tarihi : 29 Ekim 2020.
  • URL2: The 10th Generation International Geomagnetic Reference Field, [Online], http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html, ziyaret tarihi : 29 Ekim 2020.
  • URL3: International Reference Ionosphere. https://iri.gsfc.nasa.gov/, ziyaret tarihi : 29 Ekim 2020.
  • URL4: International GNSS Service. http://www.igs.org/products, ziyaret tarihi : 29 Ekim 2020.
  • URL5: http://ftp.aiub.unibe.ch/CODE/, ziyaret tarihi : 29 Ekim 2020.

Comparison of Ionospheric Correction Models Applied in Single Frequency GNSS Receivers

Year 2021, , 428 - 441, 01.06.2021
https://doi.org/10.36306/konjes.849391

Abstract

Ionosphere is one of the most important error sources in GNSS positioning and navigation applications, except for deliberate disruptions such as Selective Availability. The number of free electrons detached from atoms in the ionosphere is large enough to change the propagation of electromagnetic waves. The ionospheric effect causes delay in GNSS code measurements (group delay) and acceleration in phase measurements (phase advance) due to these free electrons. One of the main reasons why GNSS receivers are multi-frequency is that the ionospheric effect is frequency dependent and can be largely eliminated by taking advantage of this feature. However, it is not possible to eliminate the ionospheric effect in single frequency receivers with multi-frequency method, instead it can be eliminated by using the ionospheric model coefficients broadcast in the navigation messages. In this context, Klobuchar ionosphere model coefficients are also broadcast for real-time applications and single frequency receivers, for example in GPS navigation messages. With this model, it is possible to eliminate approximately 50% of the ionospheric effect. On the other hand, ionospheric effects can be eliminated by 70% using the NeQuick model recommended by International Telecommunication Union (ITU) for today's satellite systems and single frequency receivers. In this study, Ionospheric effect computations were performed using Klobuchar and NeQuick algorithms and the obtained results were compared. With this research, it has been concluded that both algorithms can be adapted in any “local and national” GNSS receiver firmware to be manufactured in future in Turkey.

References

  • Aragon-Angel A., Orus, R., Hernandez-Pajares, M., Juan, J.M. ve Sanz J., 2006, “Preliminary NeQuick assessment for future single frequency users of Galileo”, in Proceedings of the 6th Geomatic Week, Barcelona, Spain.
  • Bidaine, B., Prieto-Cerdeira, R. ve Orus, R., 2006, “NeQuick: In-Depth Analysis and New Developments”, In Proceedings of the 3rd ESA Workshop on Satellite Navigation User Equipment Technologies NAVITEC, Noordwijk, The Netherlands.
  • Ciećko, A. ve Grunwald, G., 2020, “Klobuchar, NeQuick G,and EGNOS Ionospheric Models for GPS/EGNOS Single-Frequency Positioning under 6–12 September 2017 Space Weather Events”, Appl. Sci., 10, 1553; doi:10.3390/app10051553.
  • Dach R., Lutz, S., Walser, P. ve Fridez, P., 2015, ”Bernese GNSS Software Version 5.2”, Astronomical Institute, University of Bern.
  • Di Giovanni, G. ve Radicella, S.M., 1990,”An Analytical Model of the Electron Density Profile in the Ionosphere”, Adv. Space Res., 10 (11), 27-30.
  • EC, 2016, “European GNSS (Galileo) open service ionospheric correction algorithm for Galileo single frequency users”. European Commission.
  • Hoffmann-W.B., Lichtenegger, H., Wasle, E., 2008, “GNSS-Global Navigation Satellite Systems”, Springer-Verlag Wien, eISBN: 978-3-211-73017-1.
  • IS-GPS-200K, 2019, NAVSTAR GPS Space Segment/Navigation User Segment Interfaces.
  • ITU-R, 2019, "Ionospheric propagation data and prediction methods required for the design of satellite networks and systems", Recommendation ITU-R P.531-14.P Series Radio wave propagation.
  • Jin, R., Jin, S. ve Feng, G., 2012, ” M_DCB: MATLAB code for estimating GPS satellite and receiver differential code biases”, GPS Solution, 16, 541–548.
  • Kahveci, M., 1997, “Türkiye Koşullarında Yapılan GPS Gözlemlerinde Ortam Etkilerinn Araştırılması”, Doktora Tezi, İTÜ Fen Bilimleri Enstitüsü.
  • Kahveci M.,ve Yıldız F., 2018, ”GPS/GNSS Uydularla Konum Belirleme Sistemleri”, 10.basım, Nobel Yayıncılık, Ankara.
  • Klobuchar J.A., 1987, “Ionospheric time-delay algorithm for single-frequency GPS users”. IEEE Transactions on aerospace and electronic systems ;(3):325-331.
  • Klobuchar, J.A. ve Doherty, P.H., 1990, “The Statistics of Ionospheric Time Delay for GPS Ranging on L1.” Proceedings of the ION GPS-90, the 3rd International Technical Meeting of the Satellite Division of The Institute of Navigation, Colorado Springs, CO, 19-21 September, The Institute of Navigation, Washington, DC, pp.161-168.
  • Komjathy A., 1990, “Global Ionospheric Total Electron Content Mapping Using the Global Positioning System”, Technical report Nr.188, Department of Geodesy and Geomatics Engineering University of New Brunswick.
  • Naoki, A. ve Kazuaki, H., 1998, “Correction of ionospheric delay on GLONASS using the GPS navigation message”, In Proceedings of the ION GPS , Long Beach, CA, USA; pp. 667–671.
  • Orus-Perez R., 2017, “Ionospheric error contribution to GNSS single frequency navigation at the 2014 solar maximum”, J Geodesy 91(4):397–407.
  • OS SIS ICD-2006, "Galileo Open Service, Signal in Space Interface Control Document", European Space Agency.
  • Paakki, T., DellaRosa, F. ve Nurmi, J., 2015, “PVT Computation Issues in Mixed Galileo/GPS Reception In: Nurmi, J. Lohan, E. S. Sand, S. Hurkskainen, H.,eds. GALILEO Positioning Technology”, Springer, New York.
  • Piriz, R., Roldan, P., Golcz, R., Moriana, C. ve Leute, J., 2016, “Performance of the NeQuick G iono model for single-frequency GNSS timing applications”, European Frequency and Time Forum (EFTF), IEEE.
  • Prieto-Cerdeira R., Orus-Peres, R., Breeuwer, E., Lucas-Rodriguez, R. and Falcone, M., 2014, “Performance of the Galileo Single-Frequency Ionospheric Correction During In-Orbit Validation”, GPS world, 25(6), 53-58.
  • Rovira-Garcia, A., Ibanez-Segura, D., Orus-Perez, R., Juan, J.M., Sanz, J. and Gonzalez-Casado, G., 2020, “Assessing the quality of ionospheric models through GNSS positioning error: methodology and results”, GPS Solutions, 24:4.
  • Schaer S, 1999,” Mapping and predicting the earth’s ionosphere using global positioning system”, Doctoral dissertation, Astronomy Institute, University Bern, Switzerland.
  • Wolfgang R.D. ve Thaller, D., 2013, “IERS Annual Report, International Earth Rotation and Reference Systems Service”, Central Bureau. Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, 2014. 157 pp., ISBN 978-3-86482-073-1.
  • URL1: https://spawx.nwra.com/spawx/ssne-cycle.html , ziyaret tarihi : 29 Ekim 2020.
  • URL2: The 10th Generation International Geomagnetic Reference Field, [Online], http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html, ziyaret tarihi : 29 Ekim 2020.
  • URL3: International Reference Ionosphere. https://iri.gsfc.nasa.gov/, ziyaret tarihi : 29 Ekim 2020.
  • URL4: International GNSS Service. http://www.igs.org/products, ziyaret tarihi : 29 Ekim 2020.
  • URL5: http://ftp.aiub.unibe.ch/CODE/, ziyaret tarihi : 29 Ekim 2020.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Muzaffer Kahveci 0000-0001-5380-7164

Damla Alioğlu 0000-0002-2339-7093

Güray Çetin 0000-0002-2264-6457

Publication Date June 1, 2021
Submission Date December 29, 2020
Acceptance Date February 2, 2021
Published in Issue Year 2021

Cite

IEEE M. Kahveci, D. Alioğlu, and G. Çetin, “TEK FREKANSLI GNSS ALICILARINDA KULLANILAN İYONOSFERİK ETKİ DÜZELTME MODELLERİNİN KARŞILAŞTIRILMASI”, KONJES, vol. 9, no. 2, pp. 428–441, 2021, doi: 10.36306/konjes.849391.