Research Article
BibTex RIS Cite

PERFORMANCE COMPARISON OF PID CONTROLLER AND FUZZY LOGIC CONTROLLER FOR WATER LEVEL CONTROL WITH APPLYING TIME DELAY

Year 2021, , 858 - 871, 04.12.2021
https://doi.org/10.36306/konjes.976918

Abstract

Liquid level control is a system often found in most industrial facilities. Usually, embedded control systems are used, as these systems play an increasingly important role in control engineering. Time delay is one of the most important parameters which affects the control systems performance. This study aims to design a water level control system in MATLAB/ Simulink environment using the proportional integral derivative (PID) controller and Fuzzy Logic (FL) controller and then to investigate the effect of the time delay on their performance. The two control systems were tested and compared in terms of performance, with and without applying a time delay. The study highlights the application of two types of delays (distributed time delay and discrete-time delay) to the output of the built-in control system and discusses the results. The results showed that the FL controller is better than the PID controller in terms of stability and performance. Although the rise time of both controllers was almost the same, the FL controller showed higher performance in terms of overshoot and settling time. While the overshoot for the PID controller was 9.33 %, it did not appear when using the FL controller. Moreover, the settling time of the PID controller was 10 seconds, while the FL controller took only 8.6 seconds to achieve stabilization. As a result, the FL controller has demonstrated the ability to eliminate the overshoot problem that appears when using PID controllers and stabilize faster.

References

  • Al Tahtawi, A. R., & Marsya, S. Y. B. S. C., 2020, “The Implementation of Embedded Fuzzy Logic Controller on Liquid Level Control System. “ In International Seminar of Science and Applied Technology (ISSAT 2020), 161-66. Atlantis Press.
  • Beretta, E., & Breda, D., 2016, “Discrete or distributed delay? Effects on stability of population growth. “, Mathematical Biosciences & Engineering, 13(1), 19.
  • Boada, B. L., Boada, M. J. L., & Diaz, V., 2005, “Yaw moment control for vehicle stability in a crosswind“, International journal of vehicle design, 39: 331-48.
  • Chen, L., 2021, “Principle and Simulation PID Controller of Liquid Level System. “, In Journal of Physics: Conference Series, 012187. IOP Publishing.
  • Dinesh, C., Manikanta, V. V., Rohini, H. S., & Prabhu, K. R., 2015, “Real time level control of conical tank and comparison of fuzzy and classical PID controller“, Indian Journal of Science and Technology, 8(S2), 40-44.
  • Ellis, G. ,2012, “Control system design guide: using your computer to understand and diagnose feedback controllers.“, Butterworth-Heinemann.
  • George, T., & Ganesan, V., 2020, “Optimal tuning of PID controller in time delay system: a review on various optimization techniques. “, Chemical Product and Process Modeling.
  • Kamala, N., Thyagarajan, T., & Renganathan, S., 2012, “Multivariable control of nonlinear process using soft computing techniques. “, Journal of advances in information technology, 3(1), 48-56.
  • Kumar, S., & Nagpal, P., 2017, “Comparative Analyisis of P, PI, PID and Fuzzy Logic Controller for Tank Water Level Control System.“, International Research Journal of Engineering and Technology (IRJET), 4(4), 1174-1177.
  • Meshram, P. M., & Kanojiya, R. G., 2012, “Tuning of PID controller using Ziegler-Nichols method for speed control of DC motor. “, IEEE-international conference on advances in engineering, science and management (ICAESM-2012) (pp. 117-122). IEEE.
  • Mukhtar, A., Tayal, V. K., & Singh, H. P., 2019, “Pso optimized pid controller design for the process liquid level control. “, In 2019 3Rd International Conference On Recent Developments In Control, Automation & Power Engineering (RDCAPE) (pp. 590-593). IEEE.
  • Muresan, C. I., Birs, I. R., Ionescu, C. M., & De Keyser, R., 2019, “Tuning of fractional order proportional integral/proportional derivative controllers based on existence conditions. “, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 233(4), 384-391.
  • Perng, J. W., Chen, G. Y., & Hsieh, S. C., 2014, “Optimal PID controller design based on PSO-RBFNN for wind turbine systems. “, Energies, 7(1), 191-209.
  • Petkov, P. H., Slavov, T. N., & Kralev, J. K., 2018, “Design of Embedded Robust Control Systems using MATLAB®/Simulink®“, (Vol. 113). Control, Robotics and Sensors.
  • Plerou, A., Vlamou, E., & Papadopoulos, B., 2016, “Visualization of neuro-fuzzy networks training algorithms: The backpropagation algorithm approach.“, Psychology and Mental Health: Concepts, Methodologies, Tools, and Applications (pp. 705-737). IGI Global.
  • Prusty, S. B., Pati, U. C., & Mahapatra, K., 2014, “Implementation of fuzzy-PID controller to liquid level system using LabVIEW. “, Proceedings of The 2014 International Conference on Control, Instrumentation, Energy and Communication (CIEC) (pp. 36-40). IEEE.
  • Shahid, H., Murawwat, S., Ahmed, I., Naseer, S., Fiaz, R., Afzaal, A., & Rafiq, S., 2016, “Design of a fuzzy logic based controller for fluid level application.“, World Journal of Engineering and Technology, 4(3), 469-476.
  • Shaikh, H. M., & Kulkarni, N. R., 2019, “Perception on PSO, Fuzzy and Fuzzy-PID for Water Level Control of Coupled Tank System. “, 2019 IEEE Pune Section International Conference (PuneCon) (pp. 1-5). IEEE.
  • Sreepradha, C., Deepa, P., Panda, R. C., Manamali, M., & Shivakumar, R., 2016, “Synthesis of fuzzy sliding mode controller for liquid level control in spherical tank. “, Cogent Engineering, 3(1), 1222042.
  • Thakur, A. S., Singh, H., & Wadhwani, S., 2015, “Designing of fuzzy logic controller for liquid level controlling. “, International Journal of u-and e-Service, Science and Technology, 8(6), 267-276.
  • Thompson, J. A., Roecker, S., Grunwald, S., & Owens, P. R., 2012, “Digital soil mapping: Interactions with and applications for hydropedology“. Hydropedology, 665-709.
  • Torres, B. S., De Carvalho, F. B., de Oliveira Fonseca, M., & Seixas Filho, C., 2006, “Performance assessment of control loops–case studies.“, Proc IFAC ADCHEM, Gramado, Brasil.
  • Yahya, S., Al Tahtawi, A. R., Wijayanto, K., & Faizah, B. A., 2020, “Liquid Flow Control Design Based on PID-Fuzzy Controller with anti-Windup Compensator. “, 2020 7th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE) (pp. 7-12). IEEE.
  • Yang, S. K., 2012, “A new anti‐windup strategy for PID controllers with derivative filters. “, Asian Journal of control, 14(2), 564-571.
  • Yumurtacı, M., & Verim, Ö., 2020, “Liquid level control with different control methods based on Matlab/Simulink and Arduino for the control systems lesson.“, International Advanced Researches and Engineering Journal, 4(3), 249-254.

Zaman Gecikmesi Uygulanarak Su Seviyesi Kontrolü İçin PID Kontrolör ve Bulanık Mantık Kontrolörünün Performans Karşılaştırması

Year 2021, , 858 - 871, 04.12.2021
https://doi.org/10.36306/konjes.976918

Abstract

Sıvı seviye kontrolü, çoğu endüstriyel tesiste sıklıkla bulunan bir sistemdir. Genellikle gömülü kontrol sistemleri kullanılır, çünkü bu sistemler kontrol mühendisliğinde giderek daha önemli bir rol oynar. Zaman gecikmesi, kontrol sistemlerinin performansını etkileyen en önemli parametrelerden biridir. Bu çalışma, MATLAB/Simulink ortamında orantılı integral türev (PID) denetleyicisi ve Bulanık Mantık (FL) denetleyicisi kullanarak bir su seviyesi kontrol sistemi tasarlamayı ve ardından zaman gecikmesinin performanslarına etkisini araştırmayı amaçlamaktadır. İki kontrol sistemi, zaman gecikmesi uygulanarak ve uygulanmadan performans açısından test edilmiş ve karşılaştırılmıştır. Bu çalışma, kontrol sisteminin çıkışına iki tür gecikmenin (dağıtılmış zaman gecikmesi ve ayrık zaman gecikmesi) uygulanmasını vurgular ve sonuçları tartışır. Sonuçlar, FL kontrolörünün kararlılık ve performans açısından PID kontrolörden daha iyi olduğunu göstermiştir. Her iki kontrolörün yükselme süresi hemen hemen aynı olmasına rağmen, FL kontrolör aşım ve yerleşme süresi açısından daha yüksek performans göstermiştir. PID kontrolörü için aşım %9,33 iken, FL kontrolörü kullanılırken görülmüyordu. Ayrıca, PID kontrolörünün yerleşme süresi 10 saniye iken, FL kontrolörünün stabilizasyonu sağlaması sadece 8,6 saniye sürmüştür. Sonuç olarak, FL kontrolörü, PID kontrolörleri kullanılırken ortaya çıkan aşma sorununu ortadan kaldırma ve daha hızlı stabilize etme yeteneğini göstermiştir.

References

  • Al Tahtawi, A. R., & Marsya, S. Y. B. S. C., 2020, “The Implementation of Embedded Fuzzy Logic Controller on Liquid Level Control System. “ In International Seminar of Science and Applied Technology (ISSAT 2020), 161-66. Atlantis Press.
  • Beretta, E., & Breda, D., 2016, “Discrete or distributed delay? Effects on stability of population growth. “, Mathematical Biosciences & Engineering, 13(1), 19.
  • Boada, B. L., Boada, M. J. L., & Diaz, V., 2005, “Yaw moment control for vehicle stability in a crosswind“, International journal of vehicle design, 39: 331-48.
  • Chen, L., 2021, “Principle and Simulation PID Controller of Liquid Level System. “, In Journal of Physics: Conference Series, 012187. IOP Publishing.
  • Dinesh, C., Manikanta, V. V., Rohini, H. S., & Prabhu, K. R., 2015, “Real time level control of conical tank and comparison of fuzzy and classical PID controller“, Indian Journal of Science and Technology, 8(S2), 40-44.
  • Ellis, G. ,2012, “Control system design guide: using your computer to understand and diagnose feedback controllers.“, Butterworth-Heinemann.
  • George, T., & Ganesan, V., 2020, “Optimal tuning of PID controller in time delay system: a review on various optimization techniques. “, Chemical Product and Process Modeling.
  • Kamala, N., Thyagarajan, T., & Renganathan, S., 2012, “Multivariable control of nonlinear process using soft computing techniques. “, Journal of advances in information technology, 3(1), 48-56.
  • Kumar, S., & Nagpal, P., 2017, “Comparative Analyisis of P, PI, PID and Fuzzy Logic Controller for Tank Water Level Control System.“, International Research Journal of Engineering and Technology (IRJET), 4(4), 1174-1177.
  • Meshram, P. M., & Kanojiya, R. G., 2012, “Tuning of PID controller using Ziegler-Nichols method for speed control of DC motor. “, IEEE-international conference on advances in engineering, science and management (ICAESM-2012) (pp. 117-122). IEEE.
  • Mukhtar, A., Tayal, V. K., & Singh, H. P., 2019, “Pso optimized pid controller design for the process liquid level control. “, In 2019 3Rd International Conference On Recent Developments In Control, Automation & Power Engineering (RDCAPE) (pp. 590-593). IEEE.
  • Muresan, C. I., Birs, I. R., Ionescu, C. M., & De Keyser, R., 2019, “Tuning of fractional order proportional integral/proportional derivative controllers based on existence conditions. “, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 233(4), 384-391.
  • Perng, J. W., Chen, G. Y., & Hsieh, S. C., 2014, “Optimal PID controller design based on PSO-RBFNN for wind turbine systems. “, Energies, 7(1), 191-209.
  • Petkov, P. H., Slavov, T. N., & Kralev, J. K., 2018, “Design of Embedded Robust Control Systems using MATLAB®/Simulink®“, (Vol. 113). Control, Robotics and Sensors.
  • Plerou, A., Vlamou, E., & Papadopoulos, B., 2016, “Visualization of neuro-fuzzy networks training algorithms: The backpropagation algorithm approach.“, Psychology and Mental Health: Concepts, Methodologies, Tools, and Applications (pp. 705-737). IGI Global.
  • Prusty, S. B., Pati, U. C., & Mahapatra, K., 2014, “Implementation of fuzzy-PID controller to liquid level system using LabVIEW. “, Proceedings of The 2014 International Conference on Control, Instrumentation, Energy and Communication (CIEC) (pp. 36-40). IEEE.
  • Shahid, H., Murawwat, S., Ahmed, I., Naseer, S., Fiaz, R., Afzaal, A., & Rafiq, S., 2016, “Design of a fuzzy logic based controller for fluid level application.“, World Journal of Engineering and Technology, 4(3), 469-476.
  • Shaikh, H. M., & Kulkarni, N. R., 2019, “Perception on PSO, Fuzzy and Fuzzy-PID for Water Level Control of Coupled Tank System. “, 2019 IEEE Pune Section International Conference (PuneCon) (pp. 1-5). IEEE.
  • Sreepradha, C., Deepa, P., Panda, R. C., Manamali, M., & Shivakumar, R., 2016, “Synthesis of fuzzy sliding mode controller for liquid level control in spherical tank. “, Cogent Engineering, 3(1), 1222042.
  • Thakur, A. S., Singh, H., & Wadhwani, S., 2015, “Designing of fuzzy logic controller for liquid level controlling. “, International Journal of u-and e-Service, Science and Technology, 8(6), 267-276.
  • Thompson, J. A., Roecker, S., Grunwald, S., & Owens, P. R., 2012, “Digital soil mapping: Interactions with and applications for hydropedology“. Hydropedology, 665-709.
  • Torres, B. S., De Carvalho, F. B., de Oliveira Fonseca, M., & Seixas Filho, C., 2006, “Performance assessment of control loops–case studies.“, Proc IFAC ADCHEM, Gramado, Brasil.
  • Yahya, S., Al Tahtawi, A. R., Wijayanto, K., & Faizah, B. A., 2020, “Liquid Flow Control Design Based on PID-Fuzzy Controller with anti-Windup Compensator. “, 2020 7th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE) (pp. 7-12). IEEE.
  • Yang, S. K., 2012, “A new anti‐windup strategy for PID controllers with derivative filters. “, Asian Journal of control, 14(2), 564-571.
  • Yumurtacı, M., & Verim, Ö., 2020, “Liquid level control with different control methods based on Matlab/Simulink and Arduino for the control systems lesson.“, International Advanced Researches and Engineering Journal, 4(3), 249-254.
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Fuad Alhaj Omar 0000-0001-5969-2513

Publication Date December 4, 2021
Submission Date July 31, 2021
Acceptance Date September 6, 2021
Published in Issue Year 2021

Cite

IEEE F. Alhaj Omar, “PERFORMANCE COMPARISON OF PID CONTROLLER AND FUZZY LOGIC CONTROLLER FOR WATER LEVEL CONTROL WITH APPLYING TIME DELAY”, KONJES, vol. 9, no. 4, pp. 858–871, 2021, doi: 10.36306/konjes.976918.

Cited By

ALGORITHMS OF LIQUID LEVEL CONTROL BASED ON FUZZY LOGIC CONTROLLERS
The Caucasus-Economic and Social Analysis Journal of Southern Caucasus
https://doi.org/10.36962/CESAJSC58012024-12