Research Article
BibTex RIS Cite

LEWATIT SYBRON IONAC SR 7 VE LEWATIT MP 600 REÇİNELERİ İLE SULU ÇÖZELTİLERDEN Cr (VI) GİDERİMİ: DENGE VE MODELLEME ÇALIŞMASI

Year 2021, , 124 - 141, 30.12.2021
https://doi.org/10.36306/konjes.996652

Abstract

Bu araştırmada, Lewatit MP 600 ve Lewatit Sybron Ionac SR 7 reçineleri kullanılarak Cr (VI)’nın sulu çözeltilerden giderilmesi amaçlanmıştır. Bu reçineler, Cr (VI)’nın sudan uzaklaştırılması için ideal bir tutucudur. Cr (VI) giderimi için temas süresi, başlangıç Cr (VI) konsantrasyonu, pH ve reçine miktarı gibi belirli parametrelerin denge çalışmaları üzerine etkisi incelenmiştir. Kısa sürede dengeye ulaşılarak sulu ortamdan hızlı Cr (VI) giderimi, reçinelerin Cr (VI)’yı tutma etkinliğinin yüksek olduğunu göstermiştir. Lewatit MP 600 ve Lewatit SR 7 reçinelerinin, Cr (VI) iyonlarını tutmasından önce ve sonrası için Fourier Dönüşümlü Kızılötesi Spektroskopisi (FT-IR) ile reçinelerin karakterizasyonu ve Taramalı Elektron Mikroskobu (SEM) ile yüzey morfolojisi incelenmiştir. Cr (VI)’nın sulu ortamdan giderim miktarının bulunması ve reçinelerin kapasite tayini için dengede kalan Cr (VI) konsantrasyonuna karşı, reçine tarafından tutulan Cr (VI) grafikleri çizilmiştir. Grafiklere Langmuir, Freundlich, Dubinin-Raduskevich (D-R), Scatchard adsorpsiyon izoterm modelleri uygulanarak reçinelerin kapasite tayini yapılmıştır. Kullanılan reçineler için Langmuir izoterm modelinin Cr (VI) giderimi için daha uygun olduğu sonucuna varılmıştır. Yalancı-ikinci-derece kinetik model, yalancı-birinci-derece kinetik modele göre Cr (VI) giderimi için daha uygun olmuştur. Yapılan deneylerden, bu ticari reçinelerin sulu çözeltilerden Cr (VI) uzaklaştırılması için uygun reçineler olduğu görülür ve arıtma tesislerinde kullanılması önerilir.

Supporting Institution

Bilimsel Araştırma Projeleri (BAP)

Project Number

211016001

References

  • Adam, M. R., Salleh, N. M., Othman, M. H. D., Matsuura, T., Ali, M. H., Puteh, M. H., Ismail, A., Rahman, M. A. ve Jaafar, J., 2018, The adsorptive removal of chromium (VI) in aqueous solution by novel natural zeolite based hollow fibre ceramic membrane, Journal of environmental management, 224, 252-262.
  • Ali, S. W., Mirza, M. L. ve Bhatti, T. M., 2015, Removal of Cr (VI) using iron nanoparticles supported on porous cation-exchange resin, Hydrometallurgy, 157, 82-89.
  • Ashbolt, N. J., 2004, Microbial contamination of drinking water and disease outcomes in developing regions, Toxicology, 198(1-3), 229-238.
  • Balan, C., Volf, I. ve Bilba, D., 2013, Chromium (VI) removal from aqueous solutions by purolite base anion-exchange resins with gel structure, Chemical Industry and Chemical Engineering Quarterly/CICEQ, 19 (4), 615-628.
  • Bonilla-Petriciolet, A., Mendoza-Castillo, D. I. ve Reynel-Ávila, H. E., 2017, Adsorption processes for water treatment and purification, Springer, p.
  • Deler, Ö., 2011, Perlit Kullanılarak Pentakloranitrobenzen Adsorpsiyonu, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, İstanbul.
  • Economou-Eliopoulos, M., Antivachi, D., Vasilatos, C. ve Megremi, I., 2012, Evaluation of the Cr (VI) and other toxic element contamination and their potential sources: The case of the Thiva basin (Greece), Geoscience Frontiers, 3 (4), 523-539.
  • Gandhi, M. R., Viswanathan, N. ve Meenakshi, S., 2010, Adsorption mechanism of hexavalent chromium removal using Amberlite IRA 743 resin, Ion Exchange Letters, 3, 25-35.
  • Gode, F. ve Pehlivan, E., 2005, Removal of Cr (VI) from aqueous solution by two Lewatit-anion exchange resins, Journal of Hazardous Materials, B119, 175–182.
  • Kahraman T. H. ve Pehlivan E., 2019, Evaluation of anion-exchange resins on the removal of Cr(VI) polluted water: batch ion-exchange modeling, Arabian Journal of Geosciences, 12:532.
  • Karakaş, M., 2019, Sulu Çözeltilerden Adsorpsiyon Yöntemi İle Cr (VI) Giderimi, Yüksek Lisans Tezi, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Sakarya.
  • Karakurt, S., 2019, Removal of Carcinogenic Arsenic from Drinking Water By the Application of Ion Exchange Resins, Oncogen Journal, 2 (1), 5.
  • Mohan, D., Rajput, S., Singh, V. K., Steele, P. H. ve Pittman Jr, C. U., 2011, Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent, Journal of Hazardous Materials, 188 (1-3), 319-333.
  • Ngah, W. W., & Fatinathan, S. (2008). Adsorption of Cu (II) ions in aqueous solution using chitosan beads, chitosan–GLA beads and chitosan–alginate beads. Chemical Engineering Journal, 143(1-3), 62-72.
  • Parlayıcı, Ş., 2016, Bazı Ağır Metal İyonlarının Uzaklaştırılmasında Kullanılacak Yeni Tabii ve Sentetik Kompozit Adsorbanların Geliştirilmesi, Doktora Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya.
  • Parlayıcı, Ş. ve Pehlivan E., 2017, Adsorption of Cr(VI) from the aqueous solution by apricot stones activated carbon, International Proceedings of Chemical, Biological and Environmental Engineering, V0l. 101 20.
  • Parlayıcı, Ş. ve Pehlivan, E., 2020, Biosorption of methylene blue and malachite green on biodegradable magnetic Cortaderia selloana flower spikes: modeling and equilibrium study, International Journal of Phytoremediation, 1-15.
  • Pradhan, D., Sukla, L. B., Sawyer, M. ve Rahman, P. K., 2017, Recent bioreduction of hexavalent chromium inwastewater treatment, Journal of Industrial and Engineering Chemistry, 1-20.
  • Rafati, L., Ehrampoush, M. H., Rafati, A. A., Mokhtari, M. ve Mahvi, A. H., 2016, Modeling of adsorption kinetic and equilibrium isotherms of naproxen onto functionalized nano-clay composite adsorbent, Journal of Molecular Liquids, 224, 832-841.
  • Rashid, J., Barakat, M. ve Alghamdi, M., 2014b, Adsorption of chromium (VI) from wastewater by anion exchange Resin, J. of Advanced Catalysis Science and Technology, 1 (2), 26-34.
  • Suganya, S., 2018, Influence of ultrasonic waves on preparation of active carbon from coffee waste for the reclamation of effluents containing Cr (VI) ions, Journal of Industrial and Engineering Chemistry, 60, 418-430.
  • Tahir, M. A., Bhatti, H. N. ve Iqbal, M., 2016, Solar Red and Brittle Blue direct dyes adsorption onto Eucalyptus angophoroides bark: Equilibrium, kinetics and thermodynamic studies, Journal of Environmental Chemical Engineering, 4 (2), 2431-2439.
  • Treybal, R. E., 1980, Mass transfer operations, New York, 466.
  • Vedula, S. S., & Yadav, G. D., 2021, Wastewater treatment containing methylene blue dye as pollutant using adsorption by chitosan lignin membrane: Development of membrane, characterization and kinetics of adsorption. Journal of the Indian Chemical Society, 100263.
  • Yasmine, A. O., Malika, C., Abdeltif, A. ve Aicha, B., 2012, Sorption of hexavalent chromium metal onto Amberlite IRA 410–equilibrium isotherms and kinetic studies, Desalination and Water Treatment, 38 (Desalination and Water Treatment, 38 (1-3), 409-415.
  • Wawrzkiewicz M., Hubicki Z. and Polska-Adach E., 2018, Strongly basic anion exchanger Lewatit MonoPlus SR-7 for acid, reactive, and direct dyes removal from wastewaters, Separation Science and Technology, 53 (7), 1065-1075.

Cr (VI) Removal from Aqueous Solutions by Lewatit Sybron Ionac SR 7 and Lewatit MP 600 Resins: Equilibrium and Modelling Study

Year 2021, , 124 - 141, 30.12.2021
https://doi.org/10.36306/konjes.996652

Abstract

In this research, it was aimed to remove Cr (VI) from aqueous solutions by using Lewatit MP 600 and Lewatit Sybron Ionac SR 7 resins. These resins are an ideal scavenger for the removal of Cr (VI) from water. For Cr (VI) removal, the effects of certain parameters such as contact time, initial Cr (VI) concentration, pH and resin content on equilibrium studies were investigated. The rapid removal of Cr (VI) from the aqueous medium by reaching equilibrium in a short time showed that the Cr (VI) retention efficiency of the resins was high. Characterization of resins by Fourier Transform Infrared Spectroscopy (FT-IR) and surface morphology by Scanning Electron Microscope (SEM) were investigated before and after Lewatit MP 600 and Lewatit SR 7 resins adsorb Cr (VI) ions. To determine the amount of Cr (VI) removal from the aqueous medium, in other words, the capacity determination of the resins, the Cr (VI) values retained by the resin against the equilibrium Cr (VI) concentration were plotted. The capacity of the resins was determined by applying Langmuir, Freundlich, Dubinin-Raduskevich (D-R), Scatchard adsorption isoterm models to the graphs. It was concluded that Langmuir isotherm model is more suitable for Cr (VI) removal for the resins used. The pseudo-second-order kinetic model was more suitable for Cr (VI) removal than the pseudo-first-order kinetic model. From the experiments, it is seen that these commercial resins are suitable resins for the removal of Cr (VI) from aqueous solutions and are recommended for use in treatment plants.

Project Number

211016001

References

  • Adam, M. R., Salleh, N. M., Othman, M. H. D., Matsuura, T., Ali, M. H., Puteh, M. H., Ismail, A., Rahman, M. A. ve Jaafar, J., 2018, The adsorptive removal of chromium (VI) in aqueous solution by novel natural zeolite based hollow fibre ceramic membrane, Journal of environmental management, 224, 252-262.
  • Ali, S. W., Mirza, M. L. ve Bhatti, T. M., 2015, Removal of Cr (VI) using iron nanoparticles supported on porous cation-exchange resin, Hydrometallurgy, 157, 82-89.
  • Ashbolt, N. J., 2004, Microbial contamination of drinking water and disease outcomes in developing regions, Toxicology, 198(1-3), 229-238.
  • Balan, C., Volf, I. ve Bilba, D., 2013, Chromium (VI) removal from aqueous solutions by purolite base anion-exchange resins with gel structure, Chemical Industry and Chemical Engineering Quarterly/CICEQ, 19 (4), 615-628.
  • Bonilla-Petriciolet, A., Mendoza-Castillo, D. I. ve Reynel-Ávila, H. E., 2017, Adsorption processes for water treatment and purification, Springer, p.
  • Deler, Ö., 2011, Perlit Kullanılarak Pentakloranitrobenzen Adsorpsiyonu, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, İstanbul.
  • Economou-Eliopoulos, M., Antivachi, D., Vasilatos, C. ve Megremi, I., 2012, Evaluation of the Cr (VI) and other toxic element contamination and their potential sources: The case of the Thiva basin (Greece), Geoscience Frontiers, 3 (4), 523-539.
  • Gandhi, M. R., Viswanathan, N. ve Meenakshi, S., 2010, Adsorption mechanism of hexavalent chromium removal using Amberlite IRA 743 resin, Ion Exchange Letters, 3, 25-35.
  • Gode, F. ve Pehlivan, E., 2005, Removal of Cr (VI) from aqueous solution by two Lewatit-anion exchange resins, Journal of Hazardous Materials, B119, 175–182.
  • Kahraman T. H. ve Pehlivan E., 2019, Evaluation of anion-exchange resins on the removal of Cr(VI) polluted water: batch ion-exchange modeling, Arabian Journal of Geosciences, 12:532.
  • Karakaş, M., 2019, Sulu Çözeltilerden Adsorpsiyon Yöntemi İle Cr (VI) Giderimi, Yüksek Lisans Tezi, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Sakarya.
  • Karakurt, S., 2019, Removal of Carcinogenic Arsenic from Drinking Water By the Application of Ion Exchange Resins, Oncogen Journal, 2 (1), 5.
  • Mohan, D., Rajput, S., Singh, V. K., Steele, P. H. ve Pittman Jr, C. U., 2011, Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent, Journal of Hazardous Materials, 188 (1-3), 319-333.
  • Ngah, W. W., & Fatinathan, S. (2008). Adsorption of Cu (II) ions in aqueous solution using chitosan beads, chitosan–GLA beads and chitosan–alginate beads. Chemical Engineering Journal, 143(1-3), 62-72.
  • Parlayıcı, Ş., 2016, Bazı Ağır Metal İyonlarının Uzaklaştırılmasında Kullanılacak Yeni Tabii ve Sentetik Kompozit Adsorbanların Geliştirilmesi, Doktora Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya.
  • Parlayıcı, Ş. ve Pehlivan E., 2017, Adsorption of Cr(VI) from the aqueous solution by apricot stones activated carbon, International Proceedings of Chemical, Biological and Environmental Engineering, V0l. 101 20.
  • Parlayıcı, Ş. ve Pehlivan, E., 2020, Biosorption of methylene blue and malachite green on biodegradable magnetic Cortaderia selloana flower spikes: modeling and equilibrium study, International Journal of Phytoremediation, 1-15.
  • Pradhan, D., Sukla, L. B., Sawyer, M. ve Rahman, P. K., 2017, Recent bioreduction of hexavalent chromium inwastewater treatment, Journal of Industrial and Engineering Chemistry, 1-20.
  • Rafati, L., Ehrampoush, M. H., Rafati, A. A., Mokhtari, M. ve Mahvi, A. H., 2016, Modeling of adsorption kinetic and equilibrium isotherms of naproxen onto functionalized nano-clay composite adsorbent, Journal of Molecular Liquids, 224, 832-841.
  • Rashid, J., Barakat, M. ve Alghamdi, M., 2014b, Adsorption of chromium (VI) from wastewater by anion exchange Resin, J. of Advanced Catalysis Science and Technology, 1 (2), 26-34.
  • Suganya, S., 2018, Influence of ultrasonic waves on preparation of active carbon from coffee waste for the reclamation of effluents containing Cr (VI) ions, Journal of Industrial and Engineering Chemistry, 60, 418-430.
  • Tahir, M. A., Bhatti, H. N. ve Iqbal, M., 2016, Solar Red and Brittle Blue direct dyes adsorption onto Eucalyptus angophoroides bark: Equilibrium, kinetics and thermodynamic studies, Journal of Environmental Chemical Engineering, 4 (2), 2431-2439.
  • Treybal, R. E., 1980, Mass transfer operations, New York, 466.
  • Vedula, S. S., & Yadav, G. D., 2021, Wastewater treatment containing methylene blue dye as pollutant using adsorption by chitosan lignin membrane: Development of membrane, characterization and kinetics of adsorption. Journal of the Indian Chemical Society, 100263.
  • Yasmine, A. O., Malika, C., Abdeltif, A. ve Aicha, B., 2012, Sorption of hexavalent chromium metal onto Amberlite IRA 410–equilibrium isotherms and kinetic studies, Desalination and Water Treatment, 38 (Desalination and Water Treatment, 38 (1-3), 409-415.
  • Wawrzkiewicz M., Hubicki Z. and Polska-Adach E., 2018, Strongly basic anion exchanger Lewatit MonoPlus SR-7 for acid, reactive, and direct dyes removal from wastewaters, Separation Science and Technology, 53 (7), 1065-1075.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Deniz Ümmetoğlu 0000-0001-5880-312X

Erol Pehlivan 0000-0003-3960-6790

Project Number 211016001
Publication Date December 30, 2021
Submission Date September 16, 2021
Acceptance Date November 26, 2021
Published in Issue Year 2021

Cite

IEEE D. Ümmetoğlu and E. Pehlivan, “LEWATIT SYBRON IONAC SR 7 VE LEWATIT MP 600 REÇİNELERİ İLE SULU ÇÖZELTİLERDEN Cr (VI) GİDERİMİ: DENGE VE MODELLEME ÇALIŞMASI”, KONJES, vol. 9, pp. 124–141, 2021, doi: 10.36306/konjes.996652.