Research Article
BibTex RIS Cite

İNDİRGENMİŞ GRAFEN OKSİT DESTEKLİ Fe-Ce BİMETALİK NANOPARTİKÜL KOMPOZİT MALZEMESİNİN SENTEZİ VE p-NİTROFENOLÜN HETEROJEN FENTON-BENZERİ REAKSİYON İLE DEGRADASYONUNDA KATALİZÖR OLARAK KULLANIMI

Year 2021, , 157 - 172, 30.12.2021
https://doi.org/10.36306/konjes.997618

Abstract

Bu çalışmada, öncelikle modifiye Hummers yöntemi ile grafen oksit (GO) destek malzemesi sentezlenmiş daha sonra birlikte çöktürme yöntemi ile indirgenmiş grafen oksit destekli demir-seryum bimetalik nanopartikül (r-GO/Fe-CeNPs) kompozit malzemesi hazırlanmıştır. Sentezlenen GO’nun ve kompozit malzemenin (r-GO/Fe-CeNPs); FT-IR, XRD, ve SEM analizleri ile karakterizasyonu gerçekleştirilmiştir. r-GO/Fe-CeNPs’nin manyetik davranışı ise VSM analizi ile belirlenmiştir. GO’nun FT-IR ve XRD analiz sonuçlarına göre, GO’ya özgü fonksiyonel gruplar ve karakteristik pikler elde edilmiştir. SEM görüntülerinden ise, GO’nin katmanlı ve homojen bir yüzeye sahip olduğu görülmüştür. r-GO/Fe-CeNPs’nin FT-IR spektrumunda r-GO’ya; CeO ve Fe nanopartiküllerine ait karakteristik bantlar elde edilmiş; XRD spektrumundan yapının amorf özellik gösterdiği belirlenmiştir. Farklı büyütme oranlarında elde edilen r-GO/Fe-CeNPs’lere ait SEM görüntülerinde ise indirgenmiş grafen oksit üzerine dağılmış çiçek benzeri ve aglomere olmuş küresel nanopartiküllerin oluştuğu görülmüştür. Fe-CeNPs’nin ortalama tanecik boyutu SEM görüntülerinden Image J programı ile 70.25 nm olarak belirlenmiştir. r-GO/Fe-CeNPs’nin VSM analiz sonuçlarına göre; katalizörün doygunluk manyetizasyonu (Ms) 40.13 A m2/kg olarak belirlenmiştir. Çalışmanın ikinci bölümünde ise sentezlenen kompozit malzemenin p-nitrofenolün (p-NP) heterojen Fenton-benzeri reaksiyon ile degradasyonunda katalizör olarak kullanılabilirliği ve Fenton-benzeri reaksiyon sürecini etkileyen parametreler olan başlangıç pH’sı, başlangıç p-NP derişimi, katalizör derişimi, H2O2 derişimi, ve sıcaklığın etkisi araştırılmıştır. Optimum ortam koşulları; başlangıç pH’sı 3.0, başlangıç p-NP derişimi 50 mg/L, katalizör derişimi 0.5 g/L, H2O2 derişimi 100 mM ve sıcaklık 65°C olarak belirlenmiştir.

Supporting Institution

MERSİN ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ KOORDİNASYON BİRİMİ (MEÜ-BAP)

Project Number

2020-1-AP7-4088

Thanks

Bu çalışma, Mersin Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi (MEÜ-BAP) tarafından 2020-1-AP7-4088 numaralı AP 7 Hızlı Destek Araştırma Projesi ile desteklenmiştir.

References

  • Ali, M. M., Mahdi, H. S., Parveen, A., & Azam, A., 2018, “Optical properties of cerium oxide (CeO2) nanoparticles synthesized by hydroxide mediated method”, In AIP Conference Proceedings, Cilt 1953, Sayı 1, ss. 030044.
  • Babuponnusami, A., & Muthukumar, K., 2014, “A review on Fenton and improvements to the Fenton process for wastewater treatment”, Journal of Environmental Chemical Engineering, Cilt 2, Sayı 1, ss. 557-572.
  • Belachew, N., Fekadu, R., & Ayalew Abebe, A., 2020, “RSM-BBD optimization of Fenton-like degradation of 4-nitrophenol using magnetite impregnated kaolin”, Air, Soil and Water Research, Cilt 13, ss. 1178622120932124.
  • Cihanoğlu, A., Gündüz, G., Dükkancı, M., 2015, “Degradation of acetic acid by heterogeneous Fenton-like oxidation over iron-containing ZSM-5 zeolites”, Applied Catalysis B-Environmental, Cilt 165, ss. 687-69.
  • Compeán-Jasso, M. E., Ruiz, F., Martínez, J. R., & Herrera-Gómez, A., 2008, “Magnetic properties of magnetite nanoparticles synthesized by forced hydrolysis”, Materials Letters, Cilt 62, Sayı 27, ss.4248-4250.
  • Dong, C. D., Huang, C. P., Nguyen, T. B., Hsiung, C. F., Wu, C. H., Lin, Y. L., & Hung, C. M., 2019, “The degradation of phthalate esters in marine sediments by persulfate over iron–cerium oxide catalyst”, Science of The Total Environment, Cilt 696, ss.133973.
  • Ensafi, A. A., Noroozi, R., Zandi, N., & Rezaei, B., 2017, “Cerium (IV) oxide decorated on reduced graphene oxide, a selective and sensitive electrochemical sensor for fenitrothion determination”, Sensors and Actuators B: Chemical, Cilt 245, ss. 980-987.
  • Erişim., Su Kirliliği Kontrolü Yönetmeliğinde Değişiklik Yapılmasına Dair Yönetmelik. Çevre ve Orman Bakanlığı, 2008, http://www.resmigazete.gov.tr, ziyaret tarihi: 10.09.2021
  • Guo, S., Zhang, G., Guo, Y., & Jimmy, C. Y., 2013, “Graphene oxide–Fe2O3 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants”, Carbon, Cilt 60, ss.437-444.
  • Johra, F.T., Lee, J. W., & Jung, W. G., 2014, “Facile and safe graphene preparation on solution based platform”, Journal of Industrial and Engineering Chemistry, Cilt 20, Sayı 5, ss. 2883-2887.
  • Liu, M., Jia, Z., Li, P., Liu, Y., Zhao, M., Yang, Y., ...& Yu, C., 2019, “High Catalytic Activity of Fe3− x Cu xO4/Graphene Oxide (0≤ x≤ 0.1) Nanocomposites as Heterogeneous Fenton Catalysts for p-Nitrophenol Degradation”, Water, Air, & Soil Pollution, Cilt 230, Sayı 3, ss.1-15.
  • Liu, Q., Zhou, L., Liu, L., Li, J., Wang, S., Znad, H., & Liu, S., 2020, “Magnetic ZnO@ Fe3O4 composite for self-generated H2O2 toward photo-Fenton-like oxidation of nitrophenol”, Composites Part B: Engineering, Cilt 200, ss.108345.
  • Min, L., Zhang, P., Fan, M., Xu, X., Wang, C., Tang, J., & Sun, H., 2021, “Efficient degradation of p-nitrophenol by Fe@ pomelo peel-derived biochar composites and its mechanism of simultaneous reduction and oxidation process”, Chemosphere, Cilt 267, ss.129213.
  • Mirzaei, A., Chen, Z., Haghighat, F., Yerushalmi, L., 2017, “Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes–A review”, Chemosphere, Cilt 174, ss. 665-688.
  • Nor, W. F. K. N., Soh, S. K. C., Azmi, A. A. A., Yusof, M. S. M., & Shamsuddin, M., 2017, “Synthesis and physicochemical properties of magnetite nanoparticles (Fe3O4) as potential solid support for homogeneous catalysts”, Malaysian Journal of Analytical Sciences, Cilt 2, Sayı 5, ss.768-774.
  • Pai, A. R., & Nair, B., 2013, “Synthesis of reduced graphene oxide using novel exfoliation technique and its characterizations”, Journal Of Nano-And Electronıc Physıcs, Cilt 5, Sayı 2, ss. 02032.
  • Rodrigues, C. S., Soares, O. S. G. P., Pinho, M. T., Pereira, M. F. R., & Madeira, L. M., 2017, “p-Nitrophenol degradation by heterogeneous Fenton’s oxidation over activated carbon-based catalysts”, Applied Catalysis B-Environmental, Cilt 219, ss.09-122.
  • Ruíz-Baltazar, A., Esparza, R., Rosas, G., & Pérez, R., 2015, “Effect of the surfactant on the growth and oxidation of iron nanoparticles”, Journal of Nanomaterials, Cilt 2015, ss. 1-8.
  • Shahriary, L., & Athawale, A. A., 2014, “Graphene oxide synthesized by using modified hummers approach”, International Journal of Renewable Energy and Environmental Engineering, Cilt 2, Sayı, 01, ss.58-63.
  • Sodipo, B. K., & Azlan, A. A., 2015, “Superparamagnetic iron oxide nanoparticles incorporated into silica nanoparticles by inelastic collision via ultrasonic field: role of colloidal stability”, In AIP Conference Proceedings, Cilt 657, Sayı 1, ss.100002. AIP Publishing LLC.
  • Subbulekshmi, N. L., & Subramanian, E., 2017, “Nano CuO immobilized fly ash zeolite Fenton-like catalyst for oxidative degradation of p-nitrophenol and p-nitroaniline”, Journal of Environmental Chemical Engineering, Cilt 5, Sayı 2, ss.1360-1371.
  • Temel, F., 2020, “Merrıfıeld reçinesine desteklenmiş kaliks[4] aren dinitro türevinin sulu ortamdaki fenolik türlere karşı ekstraksiyon özelliklerinin incelenmesi”, Konya Mühendislik Bilimleri Dergisi, Cilt 8, Sayı 1, ss.60-70.
  • Thomas, N., Dionysiou, D. D., & Pillai, S. C., 2021, “Heterogeneous Fenton catalysts: A review of recent advances”, Journal of Hazardous Materials, Cilt 404, ss.124082.
  • Tian, X., Liu, Y., Chi, W., Wang, Y., Yue, X., Huang, Q., & Yu, C., 2017, “Catalytic degradation of phenol and p-nitrophenol using Fe3O4/MWCNT nanocomposites as heterogeneous Fenton-like catalyst”, Water, Air, & Soil Pollution, Cilt 228, Sayı 8, ss.1-12.
  • Uzunoglu, D., Ergüt, M., & Özer, A., 2019, “Heterojen Fenton-benzeri Reaksiyon ile p-nitrofenolün Degradasyonu İçin Katalizör Geliştirilmesi: Fe-Zn Nps/C Kompozit Malzemesi”,Yuzuncu Yıl University Journal of the Institute of Natural and Applied Sciences, Cilt 24, ss.87-89.
  • Vasistha, P., & Ganguly, R., 2020, “Water quality assessment of natural lakes and its importance: an overview”, Materials Today: Proceedings, Cilt 32, Sayı 4, ss. 544-552.
  • Zhang, A., Wang, N., Zhou, J., Jiang, P., ve Liu, G., 2012, “Heterogeneous Fenton-like catalytic removal of p-nitrophenol in water using acid-activated fly ash”, Journal of Hazardous Materials, Cilt 201, ss. 68-73.
  • Wan, D., Li, W., Wang, G., Lu, L., & Wei, X., 2017, “Degradation of p-Nitrophenol using magnetic Fe/FeO/Coke composite as a heterogeneous Fenton-like catalyst”, Science of the Total Environment, Cilt 574, ss.1326-1334.
  • Wan, Z., & Wang, J., 2016, “Ce-Fe-reduced graphene oxide nanocomposite as an efficient catalyst for sulfamethazine degradation in aqueous solution”, Environmental Science and Pollution Research, Cilt 23, Sayı, 18, ss.18542-18551.
  • Wan, Z., Hu, J., & Wang, J., 2016, “Removal of sulfamethazine antibiotics using CeFe-graphene nanocomposite as catalyst by Fenton-like process”, Journal of Environmental Management, Cilt 182, ss. 284-291.
  • Wang, N., Zheng, T., Zhang, G., Wang, P., 2016, “A review on Fenton-like processes for organic wastewater treatment”, Journal of Environmental Chemical Engineering, Cilt 4, Sayı 1, ss.762-787.
  • Wen, Z., Lu, J., Zhang, Y., Cheng, G., Huang, S., Chen, J., & Chen, R., 2020, “Facile inverse micelle fabrication of magnetic ordered mesoporous iron cerium bimetal oxides with excellent performance for arsenic removal from water”, Journal of Hazardous Materials, Cilt 383, ss.121172.

Synthesis of Reduced Graphene Oxide Supported Fe-Ce Bimetallic Nanoparticle Composite Material and Usage as a Catalyst in the Degradation of p-Nitrophenol by Heterogeneous Fenton-Like Reaction

Year 2021, , 157 - 172, 30.12.2021
https://doi.org/10.36306/konjes.997618

Abstract

In this study; firstly, graphene oxide (GO) support material was synthesized by the modified Hummers method and then reduced graphene oxide supported iron-cerium bimetallic nanoparticle (r-GO/Fe-CeNPs) composite material was prepared by co-precipitation method. Characterization of synthesized GO and composite material (r-GO/Fe-CeNPs) was performed by FT-IR, XRD, and SEM analyzes. The magnetic behavior of r-GO/Fe-CeNPs was determined by VSM analysis. According to GO’s FT-IR and XRD analysis results, GO-specific functional groups and characteristic peaks were obtained. From the SEM images, it was determined that GO has a layered and homogeneous surface. According to FT-IR spectrum of r-GO/Fe-CeNPs; characteristic bands of r-GO; CeO, and Fe nanoparticles were obtained; it was determined from the XRD spectrum that the structure showed amorphous properties. In the SEM images of r-GO/Fe-CeNPs obtained at different magnifications, it was observed that flower-like and agglomerated spherical nanoparticles dispersed on the reduced graphene oxide were formed. The average particle size of Fe-CeNPs was determined as 70.25 nm from the SEM images with the Image J program. According to the VSM analysis result of r-GO/Fe-CeNPs; the saturation magnetization (Ms) of the catalyst was determined as 40.13 A m2/kg. In the second part of the study, the usability of the synthesized composite material as a catalyst in the degradation of p-nitrophenol (p-NP) by heterogeneous Fenton-like reaction and the parameters affecting the Fenton-like reaction process, such as initial pH, initial p-NP concentration, catalyst concentration, H2O2 concentration, and the effect of temperature were investigated. Optimum environmental conditions were determined as the initial pH 3.0, the initial p-NP concentration 50 mg/L, the catalyst concentration 0.5 g/L, the H2O2 concentration 100 mM, and the temperature 65°C.

Project Number

2020-1-AP7-4088

References

  • Ali, M. M., Mahdi, H. S., Parveen, A., & Azam, A., 2018, “Optical properties of cerium oxide (CeO2) nanoparticles synthesized by hydroxide mediated method”, In AIP Conference Proceedings, Cilt 1953, Sayı 1, ss. 030044.
  • Babuponnusami, A., & Muthukumar, K., 2014, “A review on Fenton and improvements to the Fenton process for wastewater treatment”, Journal of Environmental Chemical Engineering, Cilt 2, Sayı 1, ss. 557-572.
  • Belachew, N., Fekadu, R., & Ayalew Abebe, A., 2020, “RSM-BBD optimization of Fenton-like degradation of 4-nitrophenol using magnetite impregnated kaolin”, Air, Soil and Water Research, Cilt 13, ss. 1178622120932124.
  • Cihanoğlu, A., Gündüz, G., Dükkancı, M., 2015, “Degradation of acetic acid by heterogeneous Fenton-like oxidation over iron-containing ZSM-5 zeolites”, Applied Catalysis B-Environmental, Cilt 165, ss. 687-69.
  • Compeán-Jasso, M. E., Ruiz, F., Martínez, J. R., & Herrera-Gómez, A., 2008, “Magnetic properties of magnetite nanoparticles synthesized by forced hydrolysis”, Materials Letters, Cilt 62, Sayı 27, ss.4248-4250.
  • Dong, C. D., Huang, C. P., Nguyen, T. B., Hsiung, C. F., Wu, C. H., Lin, Y. L., & Hung, C. M., 2019, “The degradation of phthalate esters in marine sediments by persulfate over iron–cerium oxide catalyst”, Science of The Total Environment, Cilt 696, ss.133973.
  • Ensafi, A. A., Noroozi, R., Zandi, N., & Rezaei, B., 2017, “Cerium (IV) oxide decorated on reduced graphene oxide, a selective and sensitive electrochemical sensor for fenitrothion determination”, Sensors and Actuators B: Chemical, Cilt 245, ss. 980-987.
  • Erişim., Su Kirliliği Kontrolü Yönetmeliğinde Değişiklik Yapılmasına Dair Yönetmelik. Çevre ve Orman Bakanlığı, 2008, http://www.resmigazete.gov.tr, ziyaret tarihi: 10.09.2021
  • Guo, S., Zhang, G., Guo, Y., & Jimmy, C. Y., 2013, “Graphene oxide–Fe2O3 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants”, Carbon, Cilt 60, ss.437-444.
  • Johra, F.T., Lee, J. W., & Jung, W. G., 2014, “Facile and safe graphene preparation on solution based platform”, Journal of Industrial and Engineering Chemistry, Cilt 20, Sayı 5, ss. 2883-2887.
  • Liu, M., Jia, Z., Li, P., Liu, Y., Zhao, M., Yang, Y., ...& Yu, C., 2019, “High Catalytic Activity of Fe3− x Cu xO4/Graphene Oxide (0≤ x≤ 0.1) Nanocomposites as Heterogeneous Fenton Catalysts for p-Nitrophenol Degradation”, Water, Air, & Soil Pollution, Cilt 230, Sayı 3, ss.1-15.
  • Liu, Q., Zhou, L., Liu, L., Li, J., Wang, S., Znad, H., & Liu, S., 2020, “Magnetic ZnO@ Fe3O4 composite for self-generated H2O2 toward photo-Fenton-like oxidation of nitrophenol”, Composites Part B: Engineering, Cilt 200, ss.108345.
  • Min, L., Zhang, P., Fan, M., Xu, X., Wang, C., Tang, J., & Sun, H., 2021, “Efficient degradation of p-nitrophenol by Fe@ pomelo peel-derived biochar composites and its mechanism of simultaneous reduction and oxidation process”, Chemosphere, Cilt 267, ss.129213.
  • Mirzaei, A., Chen, Z., Haghighat, F., Yerushalmi, L., 2017, “Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes–A review”, Chemosphere, Cilt 174, ss. 665-688.
  • Nor, W. F. K. N., Soh, S. K. C., Azmi, A. A. A., Yusof, M. S. M., & Shamsuddin, M., 2017, “Synthesis and physicochemical properties of magnetite nanoparticles (Fe3O4) as potential solid support for homogeneous catalysts”, Malaysian Journal of Analytical Sciences, Cilt 2, Sayı 5, ss.768-774.
  • Pai, A. R., & Nair, B., 2013, “Synthesis of reduced graphene oxide using novel exfoliation technique and its characterizations”, Journal Of Nano-And Electronıc Physıcs, Cilt 5, Sayı 2, ss. 02032.
  • Rodrigues, C. S., Soares, O. S. G. P., Pinho, M. T., Pereira, M. F. R., & Madeira, L. M., 2017, “p-Nitrophenol degradation by heterogeneous Fenton’s oxidation over activated carbon-based catalysts”, Applied Catalysis B-Environmental, Cilt 219, ss.09-122.
  • Ruíz-Baltazar, A., Esparza, R., Rosas, G., & Pérez, R., 2015, “Effect of the surfactant on the growth and oxidation of iron nanoparticles”, Journal of Nanomaterials, Cilt 2015, ss. 1-8.
  • Shahriary, L., & Athawale, A. A., 2014, “Graphene oxide synthesized by using modified hummers approach”, International Journal of Renewable Energy and Environmental Engineering, Cilt 2, Sayı, 01, ss.58-63.
  • Sodipo, B. K., & Azlan, A. A., 2015, “Superparamagnetic iron oxide nanoparticles incorporated into silica nanoparticles by inelastic collision via ultrasonic field: role of colloidal stability”, In AIP Conference Proceedings, Cilt 657, Sayı 1, ss.100002. AIP Publishing LLC.
  • Subbulekshmi, N. L., & Subramanian, E., 2017, “Nano CuO immobilized fly ash zeolite Fenton-like catalyst for oxidative degradation of p-nitrophenol and p-nitroaniline”, Journal of Environmental Chemical Engineering, Cilt 5, Sayı 2, ss.1360-1371.
  • Temel, F., 2020, “Merrıfıeld reçinesine desteklenmiş kaliks[4] aren dinitro türevinin sulu ortamdaki fenolik türlere karşı ekstraksiyon özelliklerinin incelenmesi”, Konya Mühendislik Bilimleri Dergisi, Cilt 8, Sayı 1, ss.60-70.
  • Thomas, N., Dionysiou, D. D., & Pillai, S. C., 2021, “Heterogeneous Fenton catalysts: A review of recent advances”, Journal of Hazardous Materials, Cilt 404, ss.124082.
  • Tian, X., Liu, Y., Chi, W., Wang, Y., Yue, X., Huang, Q., & Yu, C., 2017, “Catalytic degradation of phenol and p-nitrophenol using Fe3O4/MWCNT nanocomposites as heterogeneous Fenton-like catalyst”, Water, Air, & Soil Pollution, Cilt 228, Sayı 8, ss.1-12.
  • Uzunoglu, D., Ergüt, M., & Özer, A., 2019, “Heterojen Fenton-benzeri Reaksiyon ile p-nitrofenolün Degradasyonu İçin Katalizör Geliştirilmesi: Fe-Zn Nps/C Kompozit Malzemesi”,Yuzuncu Yıl University Journal of the Institute of Natural and Applied Sciences, Cilt 24, ss.87-89.
  • Vasistha, P., & Ganguly, R., 2020, “Water quality assessment of natural lakes and its importance: an overview”, Materials Today: Proceedings, Cilt 32, Sayı 4, ss. 544-552.
  • Zhang, A., Wang, N., Zhou, J., Jiang, P., ve Liu, G., 2012, “Heterogeneous Fenton-like catalytic removal of p-nitrophenol in water using acid-activated fly ash”, Journal of Hazardous Materials, Cilt 201, ss. 68-73.
  • Wan, D., Li, W., Wang, G., Lu, L., & Wei, X., 2017, “Degradation of p-Nitrophenol using magnetic Fe/FeO/Coke composite as a heterogeneous Fenton-like catalyst”, Science of the Total Environment, Cilt 574, ss.1326-1334.
  • Wan, Z., & Wang, J., 2016, “Ce-Fe-reduced graphene oxide nanocomposite as an efficient catalyst for sulfamethazine degradation in aqueous solution”, Environmental Science and Pollution Research, Cilt 23, Sayı, 18, ss.18542-18551.
  • Wan, Z., Hu, J., & Wang, J., 2016, “Removal of sulfamethazine antibiotics using CeFe-graphene nanocomposite as catalyst by Fenton-like process”, Journal of Environmental Management, Cilt 182, ss. 284-291.
  • Wang, N., Zheng, T., Zhang, G., Wang, P., 2016, “A review on Fenton-like processes for organic wastewater treatment”, Journal of Environmental Chemical Engineering, Cilt 4, Sayı 1, ss.762-787.
  • Wen, Z., Lu, J., Zhang, Y., Cheng, G., Huang, S., Chen, J., & Chen, R., 2020, “Facile inverse micelle fabrication of magnetic ordered mesoporous iron cerium bimetal oxides with excellent performance for arsenic removal from water”, Journal of Hazardous Materials, Cilt 383, ss.121172.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Memduha Ergüt 0000-0001-7297-1533

Prof.dr. Ayla Özer This is me 0000-0002-7824-238X

Project Number 2020-1-AP7-4088
Publication Date December 30, 2021
Submission Date September 19, 2021
Acceptance Date December 18, 2021
Published in Issue Year 2021

Cite

IEEE M. Ergüt and P. A. Özer, “İNDİRGENMİŞ GRAFEN OKSİT DESTEKLİ Fe-Ce BİMETALİK NANOPARTİKÜL KOMPOZİT MALZEMESİNİN SENTEZİ VE p-NİTROFENOLÜN HETEROJEN FENTON-BENZERİ REAKSİYON İLE DEGRADASYONUNDA KATALİZÖR OLARAK KULLANIMI”, KONJES, vol. 9, pp. 157–172, 2021, doi: 10.36306/konjes.997618.