Araştırma Makalesi
BibTex RIS Kaynak Göster

POLİVİNİL KLORÜR (PVC) ULTRAFİLTRASYON MEMBRAN PERFORMANSININ ÇOK DUVARLI KARBON NANOTÜP KATKISI İLE İYİLEŞTİRİLMESİ

Yıl 2020, Cilt: 8 Sayı: 3, 479 - 498, 03.09.2020
https://doi.org/10.36306/konjes.620662

Öz

Bu çalışmada, faz dönüşüm tekniği ile polivinil klorür (PVC) esaslı karbon nanotüp katkılı
nanokompozit membranlar hazırlanmıştır. En uygun membran reçetesinin belirlenmesi amacıyla en
yüksek saf su akısı ve madde giderimini veren PVP/PVC/çözücü oranı araştırılmıştır. Farklı yükleme
oranlarında (%0,1-3,0, a/a) membran çözeltisine ilave edilen oksitlenmiş çok duvarlı karbon nanotüpler (o-
MWCNT) ile hazırlanan membranların özellikleri saf membranın özellikleriyle karşılaştırılmıştır.
Hazırlanan membranların saf su geçirgenliği ve madde giderimi gibi filtrasyon performans özellikleri
belirlenmiştir. Membranların morfolojik özellikleri (gözenekliliği, gözenek boyutu ve dağılımı) Taramalı
Elektron Mikroskobu (SEM) analizi, hidrofilikliği temas açısı ganyometresi, içerdiği fonksiyonel gruplar
Fourier Dönüşümlü Kızılötesi (FTIR) Spektroskopisi analizi, ısıl kararlılığı Termogravimetrik Analiz
(TGA), mekanik dayanımı ise nanoindentasyon analizi ile tespit edilmiştir. Hidrofobik olan PVC esaslı saf
membran matrisine eklenen o-MWCNT’lerin membran hidrofilikliğini arttırarak sadece geçirgenliği ve
madde giderimini değil, aynı zamanda membranın yapısal özelliklerini de iyileştirdiği görülmüştür.
Deneysel çalışmalardan, %0,5 o-MWCNT’leri içeren nanokompozit membranın en düşük temas açısı ve
en yüksek porositeye sahip olmasından dolayı, en yüksek akı (356 L/m2sa) ve madde giderimine (%95,6)
sahip olduğu tespit edilmiştir.

Destekleyen Kurum

Eskişehir Teknik Üniversitesi

Proje Numarası

1706F384

Teşekkür

Bu çalışma Eskişehir Teknik Üniversitesi Bilimsel Araştırma Projeleri (BAP) Komisyonu (Proje No: 1706F384) kapsamında gerçekleştirilmiş olup finansal desteklerinden dolayı BAP Komisyonuna teşekkür ederim.

Kaynakça

  • Aani, S. A., Gomez, V., Wright, C. J., Hilal, N., 2017. “Fabrication of Antibacterial Mixed Matrix Nanocomposite Membranes Using Hybrid Nanostructure of Silver Coated Multi-Walled Carbon Nanotubes”, Chemical Engineering Journal, Vol. 326, pp. 721-736.
  • Appenzeller, J., Martel, R., Derycke, V., Radosavljevic, M., Wind, S., Neumayer, D., 2002. “Carbon Nanotubes as Potential Building Blocks for Future Nanoelectronics”, Microelectronic Engineering, Vol. 64, No. 1-4, pp. 391-397.
  • Arthanareeswaran, G., Thanikaivelan, P., 2010. “Fabrication of Cellulose Acetate-Zirconia Hybrid Membrane for Ultrafiltration Applications: Performance, structure and fouling analysis”, Separation and Purification Technology, Vol. 74, No. 2, pp. 230-215.
  • Bhavsar, V., Tripathi, D., 2017. “Structural, Optical and Aging Studies of Biocompatible PVC-PVP Blend Films”, Journal of Adhesion Science and Technology, Vol. 38, No. 5, pp. 467-475.
  • Bhran, A., Shoaib, A., Elsade, D., El-Gendi, A., Abdallah, H., 2018. “Preparation of PVC/PVP Composite Polymer Membranes Via Phase Inversion Process for Water Treatment Purposes”, Chinese Journal of Chemical Engineering, Vol. 26, No. 4, pp. 715-722.
  • Bottino, A., Capannelli, G., Comite, A., 2002. “Preparation and Characterization of Novel Porous PVDFZrO2 Composite Membranes”, Desalination, Vol. 146, No. 1-3, pp. 35-40.
  • Celik, E., Park, H., Choi H., Choi, H., 2011. “Carbon Nanotube Blended Polyethersulfone Membranes for Fouling Control in Water Treatment”, Water Research, Vol. 45, No. 1, pp. 274-82.
  • Choi, J. H., Jegal, J., Kim, W. N., 2006. “Fabrication and Characterization of Multiwalled Carbon Nanotubes/Polymer Blend Membranes”, Journal of Membrane Science, Vol. 284 No. 1-2, pp. 406- 415.
  • Demirel, E., Zhang, B., Papakyriakou, M., Xia, S., Chen, Y., 2017. “Fe2O3 Nanocomposite PVC Membrane with Enhanced Properties and Separation Performance”, Journal of Membrane Science, Vol. 529, pp. 170-184.
  • Dong, J., Fredericks, P. M., George, G. A., 1997. “Studies of the Structure and Thermal Degradation of Poly(vinyl chloride)-Poly(N-vinyl-2-pyrrolidone) Blends by using Raman and FTIR Emission Spectroscopy”, Polymer Degradation and Stability, Vol. 58 No. 1-2, pp. 159-169.
  • Dünya Su Konseyi Raporu (World Water Council (WWC) Report), Urban Urgency, Water Caucus Summary, Marseille, France, 2007.
  • Dünya Su İyileştirme Raporu (World Water Development Report (WWDR)), Managing water under uncertainty and risk, http://unesdoc.unesco.org/images/0021/002156/215644e. pdf 2012, 2 Mayıs 2013.
  • Eitan, A., Jiang, K., Dukes, D., Andrews, R., Schadler, L. S., 2003. “Surface Modification of Multiwalled Carbon Nanotubes: Toward the Tailoring of the Interface in Polymer Composites”, Chemistry of Materials, Vol. 15, pp. 3198-3201.
  • Feller, J. F., Lu, J., Zhang, K., Kumar, B., Castro, M., Gattaand N., Choi, H. J., 2011. “Novel Architecture of Carbon Nanotube Decorated Poly (Eethyl Methacrylate) Microbead Vapour Sensors Assembled by Spray Layer by Layer”, Journal of Materials Chemistry, Vol. 21, No. 12, pp. 4142-4149.
  • Gao, W., Liang, H., Ma, J., Han, M., Chen, Z., Han, Z-S., Li, G.B., 2011. “Membrane Fouling Control in Ultrafiltration Technology for Drinking Water Production: A Review”, Desalination, Vol. 272, No. 1-3, pp. 1-8.
  • Goh, P. S., Ismail, A., Ng, B., 2013. “Carbon Nanotubes For Desalination: Performance Evaluation and Current Hurdles”, Desalination, Vol. 308, pp. 2-14.
  • Goh P. S., Ng B. C., Lau W. J., Ismail, A. F., 2015. “Inorganic Nanomaterials in Polymeric Ultrafiltration Membranes for Water Treatment, Separation and Purification Reviews, Vo. 44, pp. 216-249.
  • Han, M. J., Nam, S.T., 2002. “Thermodynamic and Rheological Variation in Polysulfone Solution by PVP and Its Effect in the Preparation of Phase Inversion Membrane, Journal of Membrane Science, Vol. 202, No. 1-2, pp. 55-61.
  • Hasan, M., Lee, M., 2014. “Enhancement of the Thermo-mechanical Properties and Efficacy of Mixing Technique in the Preparation of Graphene/PVC Nanocomposites Compared to Carbon Nanotubes/PVC”, Progress in Natural Science: Materials International, Vol. 24, No. 6, pp. 579-587.
  • Huang, Y., Jiao, W., Niu, Yue., Ding, G., Wang, R., 2018, “Improving the Mechanical Properties of Fe3O4/Carbon Nanotube Reinforced Nanocomposites by a Low-Magnetic-Field Induced Alignment”, Journal of Polymer Engineerig, Vol. 38, No. 8, pp. 731–738.
  • Kang, S., Asatekin, A., Mayes A., Elimelech, M., 2007, “Protein Antifouling Mechanisms of PAN UF Membranes Incorporating PAN-g-PEO Additive”, Journal of Membrane Science, Vol. 296, pp. 42- 50.
  • Kim, S. H., Kwak, S. Y., Sohn, B. H., Park, T. H., 2003. “Design of TiO2 Nanoparticle Self Assembled Aromatic Polyamide Thin-Film Composite (TFC) Membrane as an Approach to Solve Biofouling Problem”, Journal of Membrane Science, Vol. 211, No. 1, pp. 157-165.
  • Kong, J., Franklin, N. R., Zhou, C. W., Chapline, M. G., Peng, S., Dai, H. J., 2000. “Nanotube Molecular Wires as Chemical Sensors”, Science, Vol. 287, No. 5453, pp. 622-625.
  • Lee, S., Choi, B. G., Choi, D., Park, H. S., 2014. “Nanoindentation of Annealed Naf Ion/Sulfonated Graphene Oxide Nanocomposite Membranes for the Measurement of Mechanical Properties”, Journal of Membrane Science, Vol. 451, pp. 40-45.
  • Li, J. F., Xu, Z.L., Yang, H., Yu, L.Y., Liu, M., 2009. “Effect of TiO2 Nanoparticles on the Surface Morphology and Performance of Microporous PES Membrane”, Applied Surface Science, Vol. 255, No. 9, 4725- 4732.
  • Liu, J., Rinzler, A. G., Dai, H., Hafner, J. H., Bradley, R. K., Boul, P. J., Lu, A., Iverson, T., Shelimov, K., Huffman, C. B., Macias, F. R., Shon, Y. S., Lee, T. R., Colbert, D. T., Smalley, R. E., 1998. “Fullerene Pipes”, Science, Vol. 280, No. 5367, pp. 1253-1256.
  • Liu, B., Chen, C., Li, T., Crittenden, J., Chen, Y., 2013, “High Performance Ultrafiltration Membrane Composed of PVDF Blended with Its Derivative Copolymer PVDF-g-PEGMA”, Journal of Membrane Science, Vol. 445, pp. 66-75.
  • Low, Z. X., Wang, Z., Leong, S., Razmjou, A., Dumee, L. F., 2015. “Enhancement of the Antifouling Properties and Filtration Performance of Poly(ethersulfone) Ultrafiltration Membranes by Incorporation of Nanoporous Titania Nanoparticles”, Industrial Engineering Chemistry Research, Vol. 54, No. 44, pp. 11188-11198.
  • Lu, L. Y., Sun, H. L., Peng, F. B., Jiang, Z. Y., 2006. “Novel Graphite-Filled PVA/CS Hybrid Membrane for Pervaporation of Benzene/Cyclohexane Mixtures”, Journal of Membrane Science,Vol. 281, No. 1-2, pp. 245-252.
  • Ma, J., Zhao, Y., Xu, Z., Min, C., Zhou, B., Li, Y., Li, B., Niu, J., 2013,” Role of Oxygen-Containing Groups on MWCNTs in Enhanced Separation and Permeability Performance for PVDF Hybrid Ultrafiltration Membranes, Desalination, Vol. 320, pp. 1-9.
  • Mahdi, E., Chaudhuri, A. K., Tan, J. C., 2016. “Capture and Immobilisation of Iodine (I2) Utilising Polymer- Based ZIF-8 Nanocomposite Membranes”, Molecular Systems Design & Engineering, No. 1, pp. 122-131.
  • Mahendran, R., Malaisamy, R., Mohan, D., 2004. “Cellulose Acetate and Polyethersulfone Blend Ultrafiltration Membranes. Part I. Preparation and Characterizations”, Polymer for Advanced Technologies, Vol. 15, No. 3, pp. 149-157.
  • Majumder, M., Corry, B., 2011. “Anomalous Decline of Water Transport in Covalently Modi- fied Carbon Nanotube Membranes”, Chemical Communications, Vol. 47, No. 27, pp. 7683-7685.
  • Merkel, T. C., Freeman, B. D., Spontak, R. J., He, Z., Pinnau, I., Meakin, P., Hill, A. J., 2002.
  • “Ultrapermeable, Reverse-Selective Nanocomposite Membranes”, Science, Vol. 296, No. 5567, pp. 519-522.
  • Misra, R., Fu, B. X., Morgan, S. E., 2007. “Surface Energetics, Dispersion, and Nanotribomechanical Behavior of POSS/PP Hybrid Nanocomposites”, Journal of Polymer Science Part B: Polymer Physics, Vol. 45, No. 17, pp. 2441-2455.
  • Mulder M., 1991, Basic Principles of Membrane Technology, Kluwer Academic Publishers, Dordrecht, Netherlands.
  • Norouzi, M., Pakizeh, M., Namvar-Mahboub, M., 2016, “The Effect of Highly Dispersed Oxidized Multiwalled Carbon Nanotubes on the Performance of PVDF/PVC Ultrafiltration Membranes, Desalination and Water Treatment, Vol. 57, pp. 24778-24787.
  • Qiu, S., Wu, L., Pan, X., Zhang, L., Chen, H., Gao, C., 2009. “Preparation and Properties of Functionalized Carbon Nanotube/PSF Blend Ultrafiltration Membranes”, Journal of Membrane Science, Vol. 342, No. 1-2, pp. 165-172.

Performance Enhancement of Polyvinyl Chloride (PVC) Ultrafiltration Membrane by Incorporation of Multi-Walled Carbon Nanotubes

Yıl 2020, Cilt: 8 Sayı: 3, 479 - 498, 03.09.2020
https://doi.org/10.36306/konjes.620662

Öz

In this study, polyvinyl chloride (PVC) based nanocomposite membranes incorporated with
carbon nanotubes were fabricated using phase inversion technique. PVP/PVC/solvent ratio was
investigated for the highest pure water flux and rejection in order to determine the most suitable
membrane recipe. The properties of nanocomposite membranes fabricated in the presence of oxidized
multiwalled carbon nanotubes (o-MWCNT) with varying loading levels (0.1-3.0%, by mass) were
compared with those of pristine membranes. Filtration performance such as pure water flux and rejection
values of the fabricated membranes were determined. Morphological properties (porosity, mean pore
diameter and pore distribution), contact angles, functional groups, thermal stability and mechanical
strength of the fabricated membranes were determined using Scanning Electron Microscopy (SEM), a
contact angle ganiometer, Fourier Transform Infrared Spectroscopy (FTIR) and a nanoindenter,
respectively. It has been demonstrated that incorporating hydrophilic o-MWCNTs into the hydrophobic
polymeric matrix not only improved the permeability and rejection but also enhanced the membrane
structural properties. The results revealed that addition of 0.5% o-MWCNTs into the casting solution
provided the highest flux (356 L/m2h) and rejection rate (%95.6) due to having lowest contact angle and
highest porosity.

Proje Numarası

1706F384

Kaynakça

  • Aani, S. A., Gomez, V., Wright, C. J., Hilal, N., 2017. “Fabrication of Antibacterial Mixed Matrix Nanocomposite Membranes Using Hybrid Nanostructure of Silver Coated Multi-Walled Carbon Nanotubes”, Chemical Engineering Journal, Vol. 326, pp. 721-736.
  • Appenzeller, J., Martel, R., Derycke, V., Radosavljevic, M., Wind, S., Neumayer, D., 2002. “Carbon Nanotubes as Potential Building Blocks for Future Nanoelectronics”, Microelectronic Engineering, Vol. 64, No. 1-4, pp. 391-397.
  • Arthanareeswaran, G., Thanikaivelan, P., 2010. “Fabrication of Cellulose Acetate-Zirconia Hybrid Membrane for Ultrafiltration Applications: Performance, structure and fouling analysis”, Separation and Purification Technology, Vol. 74, No. 2, pp. 230-215.
  • Bhavsar, V., Tripathi, D., 2017. “Structural, Optical and Aging Studies of Biocompatible PVC-PVP Blend Films”, Journal of Adhesion Science and Technology, Vol. 38, No. 5, pp. 467-475.
  • Bhran, A., Shoaib, A., Elsade, D., El-Gendi, A., Abdallah, H., 2018. “Preparation of PVC/PVP Composite Polymer Membranes Via Phase Inversion Process for Water Treatment Purposes”, Chinese Journal of Chemical Engineering, Vol. 26, No. 4, pp. 715-722.
  • Bottino, A., Capannelli, G., Comite, A., 2002. “Preparation and Characterization of Novel Porous PVDFZrO2 Composite Membranes”, Desalination, Vol. 146, No. 1-3, pp. 35-40.
  • Celik, E., Park, H., Choi H., Choi, H., 2011. “Carbon Nanotube Blended Polyethersulfone Membranes for Fouling Control in Water Treatment”, Water Research, Vol. 45, No. 1, pp. 274-82.
  • Choi, J. H., Jegal, J., Kim, W. N., 2006. “Fabrication and Characterization of Multiwalled Carbon Nanotubes/Polymer Blend Membranes”, Journal of Membrane Science, Vol. 284 No. 1-2, pp. 406- 415.
  • Demirel, E., Zhang, B., Papakyriakou, M., Xia, S., Chen, Y., 2017. “Fe2O3 Nanocomposite PVC Membrane with Enhanced Properties and Separation Performance”, Journal of Membrane Science, Vol. 529, pp. 170-184.
  • Dong, J., Fredericks, P. M., George, G. A., 1997. “Studies of the Structure and Thermal Degradation of Poly(vinyl chloride)-Poly(N-vinyl-2-pyrrolidone) Blends by using Raman and FTIR Emission Spectroscopy”, Polymer Degradation and Stability, Vol. 58 No. 1-2, pp. 159-169.
  • Dünya Su Konseyi Raporu (World Water Council (WWC) Report), Urban Urgency, Water Caucus Summary, Marseille, France, 2007.
  • Dünya Su İyileştirme Raporu (World Water Development Report (WWDR)), Managing water under uncertainty and risk, http://unesdoc.unesco.org/images/0021/002156/215644e. pdf 2012, 2 Mayıs 2013.
  • Eitan, A., Jiang, K., Dukes, D., Andrews, R., Schadler, L. S., 2003. “Surface Modification of Multiwalled Carbon Nanotubes: Toward the Tailoring of the Interface in Polymer Composites”, Chemistry of Materials, Vol. 15, pp. 3198-3201.
  • Feller, J. F., Lu, J., Zhang, K., Kumar, B., Castro, M., Gattaand N., Choi, H. J., 2011. “Novel Architecture of Carbon Nanotube Decorated Poly (Eethyl Methacrylate) Microbead Vapour Sensors Assembled by Spray Layer by Layer”, Journal of Materials Chemistry, Vol. 21, No. 12, pp. 4142-4149.
  • Gao, W., Liang, H., Ma, J., Han, M., Chen, Z., Han, Z-S., Li, G.B., 2011. “Membrane Fouling Control in Ultrafiltration Technology for Drinking Water Production: A Review”, Desalination, Vol. 272, No. 1-3, pp. 1-8.
  • Goh, P. S., Ismail, A., Ng, B., 2013. “Carbon Nanotubes For Desalination: Performance Evaluation and Current Hurdles”, Desalination, Vol. 308, pp. 2-14.
  • Goh P. S., Ng B. C., Lau W. J., Ismail, A. F., 2015. “Inorganic Nanomaterials in Polymeric Ultrafiltration Membranes for Water Treatment, Separation and Purification Reviews, Vo. 44, pp. 216-249.
  • Han, M. J., Nam, S.T., 2002. “Thermodynamic and Rheological Variation in Polysulfone Solution by PVP and Its Effect in the Preparation of Phase Inversion Membrane, Journal of Membrane Science, Vol. 202, No. 1-2, pp. 55-61.
  • Hasan, M., Lee, M., 2014. “Enhancement of the Thermo-mechanical Properties and Efficacy of Mixing Technique in the Preparation of Graphene/PVC Nanocomposites Compared to Carbon Nanotubes/PVC”, Progress in Natural Science: Materials International, Vol. 24, No. 6, pp. 579-587.
  • Huang, Y., Jiao, W., Niu, Yue., Ding, G., Wang, R., 2018, “Improving the Mechanical Properties of Fe3O4/Carbon Nanotube Reinforced Nanocomposites by a Low-Magnetic-Field Induced Alignment”, Journal of Polymer Engineerig, Vol. 38, No. 8, pp. 731–738.
  • Kang, S., Asatekin, A., Mayes A., Elimelech, M., 2007, “Protein Antifouling Mechanisms of PAN UF Membranes Incorporating PAN-g-PEO Additive”, Journal of Membrane Science, Vol. 296, pp. 42- 50.
  • Kim, S. H., Kwak, S. Y., Sohn, B. H., Park, T. H., 2003. “Design of TiO2 Nanoparticle Self Assembled Aromatic Polyamide Thin-Film Composite (TFC) Membrane as an Approach to Solve Biofouling Problem”, Journal of Membrane Science, Vol. 211, No. 1, pp. 157-165.
  • Kong, J., Franklin, N. R., Zhou, C. W., Chapline, M. G., Peng, S., Dai, H. J., 2000. “Nanotube Molecular Wires as Chemical Sensors”, Science, Vol. 287, No. 5453, pp. 622-625.
  • Lee, S., Choi, B. G., Choi, D., Park, H. S., 2014. “Nanoindentation of Annealed Naf Ion/Sulfonated Graphene Oxide Nanocomposite Membranes for the Measurement of Mechanical Properties”, Journal of Membrane Science, Vol. 451, pp. 40-45.
  • Li, J. F., Xu, Z.L., Yang, H., Yu, L.Y., Liu, M., 2009. “Effect of TiO2 Nanoparticles on the Surface Morphology and Performance of Microporous PES Membrane”, Applied Surface Science, Vol. 255, No. 9, 4725- 4732.
  • Liu, J., Rinzler, A. G., Dai, H., Hafner, J. H., Bradley, R. K., Boul, P. J., Lu, A., Iverson, T., Shelimov, K., Huffman, C. B., Macias, F. R., Shon, Y. S., Lee, T. R., Colbert, D. T., Smalley, R. E., 1998. “Fullerene Pipes”, Science, Vol. 280, No. 5367, pp. 1253-1256.
  • Liu, B., Chen, C., Li, T., Crittenden, J., Chen, Y., 2013, “High Performance Ultrafiltration Membrane Composed of PVDF Blended with Its Derivative Copolymer PVDF-g-PEGMA”, Journal of Membrane Science, Vol. 445, pp. 66-75.
  • Low, Z. X., Wang, Z., Leong, S., Razmjou, A., Dumee, L. F., 2015. “Enhancement of the Antifouling Properties and Filtration Performance of Poly(ethersulfone) Ultrafiltration Membranes by Incorporation of Nanoporous Titania Nanoparticles”, Industrial Engineering Chemistry Research, Vol. 54, No. 44, pp. 11188-11198.
  • Lu, L. Y., Sun, H. L., Peng, F. B., Jiang, Z. Y., 2006. “Novel Graphite-Filled PVA/CS Hybrid Membrane for Pervaporation of Benzene/Cyclohexane Mixtures”, Journal of Membrane Science,Vol. 281, No. 1-2, pp. 245-252.
  • Ma, J., Zhao, Y., Xu, Z., Min, C., Zhou, B., Li, Y., Li, B., Niu, J., 2013,” Role of Oxygen-Containing Groups on MWCNTs in Enhanced Separation and Permeability Performance for PVDF Hybrid Ultrafiltration Membranes, Desalination, Vol. 320, pp. 1-9.
  • Mahdi, E., Chaudhuri, A. K., Tan, J. C., 2016. “Capture and Immobilisation of Iodine (I2) Utilising Polymer- Based ZIF-8 Nanocomposite Membranes”, Molecular Systems Design & Engineering, No. 1, pp. 122-131.
  • Mahendran, R., Malaisamy, R., Mohan, D., 2004. “Cellulose Acetate and Polyethersulfone Blend Ultrafiltration Membranes. Part I. Preparation and Characterizations”, Polymer for Advanced Technologies, Vol. 15, No. 3, pp. 149-157.
  • Majumder, M., Corry, B., 2011. “Anomalous Decline of Water Transport in Covalently Modi- fied Carbon Nanotube Membranes”, Chemical Communications, Vol. 47, No. 27, pp. 7683-7685.
  • Merkel, T. C., Freeman, B. D., Spontak, R. J., He, Z., Pinnau, I., Meakin, P., Hill, A. J., 2002.
  • “Ultrapermeable, Reverse-Selective Nanocomposite Membranes”, Science, Vol. 296, No. 5567, pp. 519-522.
  • Misra, R., Fu, B. X., Morgan, S. E., 2007. “Surface Energetics, Dispersion, and Nanotribomechanical Behavior of POSS/PP Hybrid Nanocomposites”, Journal of Polymer Science Part B: Polymer Physics, Vol. 45, No. 17, pp. 2441-2455.
  • Mulder M., 1991, Basic Principles of Membrane Technology, Kluwer Academic Publishers, Dordrecht, Netherlands.
  • Norouzi, M., Pakizeh, M., Namvar-Mahboub, M., 2016, “The Effect of Highly Dispersed Oxidized Multiwalled Carbon Nanotubes on the Performance of PVDF/PVC Ultrafiltration Membranes, Desalination and Water Treatment, Vol. 57, pp. 24778-24787.
  • Qiu, S., Wu, L., Pan, X., Zhang, L., Chen, H., Gao, C., 2009. “Preparation and Properties of Functionalized Carbon Nanotube/PSF Blend Ultrafiltration Membranes”, Journal of Membrane Science, Vol. 342, No. 1-2, pp. 165-172.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Elif Demirel 0000-0002-6368-3174

Proje Numarası 1706F384
Yayımlanma Tarihi 3 Eylül 2020
Gönderilme Tarihi 16 Eylül 2019
Kabul Tarihi 28 Ocak 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 8 Sayı: 3

Kaynak Göster

IEEE E. Demirel, “POLİVİNİL KLORÜR (PVC) ULTRAFİLTRASYON MEMBRAN PERFORMANSININ ÇOK DUVARLI KARBON NANOTÜP KATKISI İLE İYİLEŞTİRİLMESİ”, KONJES, c. 8, sy. 3, ss. 479–498, 2020, doi: 10.36306/konjes.620662.