Araştırma Makalesi
BibTex RIS Kaynak Göster

GRAFEN NANO PLAKALARLA TAKVİYE EDİLMİŞ Al-5,5Cu-0,5Mn MATRİSLİ KOMPOZİTLERİN TOZ METALURJİSİ İLE ÜRETİMİ VE KARAKTERİZASYONU

Yıl 2021, Cilt: 9 Sayı: 2, 403 - 415, 01.06.2021
https://doi.org/10.36306/konjes.841024

Öz

Bu çalışmada, grafen nano plakalar (GNP) ile takviye edilmiş Al-ağ.%5,5 Cu-ağ.%0,5 Mn matrisli kompozitler toz metalurjisi yöntemi ile üretilmiştir. Başlangıç tozlarının 8 saate kadar mekanik alaşımlanması ile üretilen Al-5,5Cu-0,5Mn-xGNP (x: ağ.% 0, 0,5 1 ve 2) kompozit tozları, 650 MPa altında ön şekilldendirilmiş ve takiben 600 °C’de 2 saat Ar atmosferi altında basınçsız olarak sinterlenmiştir.
Üretilen Al-5,5Cu-0,5Mn-xGNP kompozit numunelerinin mikroyapısal, mekanik ve korozyon özelliklerinin belirlenmesi için X-ışınları difraksiyonu (XRD), taramalı elektron mikroskobu-enerji dağılım spektrometresi (SEM-EDS), mikrosertlik ve korozyon testleri yapılmıştır. Üretilen Al-5,5Cu-0,5Mn-xGNP kompozitlerinin mikroyapısında Al2Cu intermetalik fazı tespit edilmiş ve mekanik alaşımlanmış numunelerde karbür fazı oluşumuna rastlanmıştır. Optimum mekanik alaşımlama süresi 4 saat olarak belirlenmiş ve bu numunelerde grafen katkısı ile sertlik değerlerinin artarak Al-5,5Cu-0,5Mn-2GNP kompozit numunesi için 123 HV’e ulaştığı belirlenmiştir. Ayrıca, grafen katkısının Al esaslı matrisin korozyon direncini düşürdüğü belirlenmiştir.

Destekleyen Kurum

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)

Proje Numarası

118M185

Teşekkür

Bu çalışma, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından 118M185 nolu proje ile desteklenmiştir.

Kaynakça

  • Akçamlı, N., Küçükelyas, B., Kaykılarlı, C., Uzunsoy, D., 2019, “Investigation of microstructural, mechanical and corrosion properties of graphene nanoplatelets reinforced Al matrix composites”, Mater Res Express, Vol. 6, No. 11, pp. 115627.
  • Bodunrin, M.O., Alaneme, K.K., Chown, L.H., 2015, “Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics”, J Mater Res Technol, Vol. 4, No. 4, pp. 434-445.
  • Davis, J.R., 1993, ASM Specialty Handbook: Aluminum and Aluminum Alloys (2. Basım), ASM International.
  • Doel, T.J.A., Bowen, P., 1996, “Tensile properties of particulate-reinforced metal matrix composites”, Composites Part A, Vol. 27, No. 8, pp.655-665.
  • Edwards, R.S., Coleman, K.S., 2013, “Graphene synthesis: relationship to applications”, Nanoscale, Vol. 5, No. 1, pp. 38-51.
  • Eisenhauer E.M. and Gan Y.X., 2019, Corrosion behavior of a carbon network/aluminum matrix porous composite in salinated and acidic environments, Chem Eng, Vol. 3, No. 2, pp. 54.
  • Tekoğlu, E., Ağaoğulları, D. Öveçoğlu, M.L., 2020. Characterization investigations of the mechanically alloyed and sequentially milled Al-12.6 wt.% Si eutectic alloy powders, Particul Sci Tech, Vol. 38, No. 1, pp.15-22.
  • Fogagnolo, J.B., Velasco, F., Robert, M.H., Torralba, J.M., 2003, “Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders”, Mater Sci Eng, A, Vol. 342, No. 1-2, pp. 131-143.
  • Hosseini, N., Abbasi, M. H., Karimzadeh, F., Enayati, M. H. 2009, “Structural evolution and grain growth kinetics during isothermal heat treatment of nanostructured Al6061”, Mater Sci Eng, A, 525 (1-2), 107-111.
  • Jafari, M., Enayati, M.H., Abbasi, M.H., Karimzadeh, F., 2009, “Thermal stability and structural changes during heat treatment of nanostructured Al2024 alloy”, J. Alloys Compd., Vol. 478, No.1-2, pp. 260-264.
  • Jones, A.R., 2001, “Mechanical Alloying”, Encyclopedia of Materials: Science and Technology, Editör: Greg, P., Encyclopedia of materials: science and technology, Elsevier BV, 1-5.
  • Kaczmar, J.W., Pietrzak, K., Włosiński, W., 2000, “The production and application of metal matrix composite materials”, J Mater Process Technol, Vol. 106, No. 1–3, pp. 58-67.
  • Kumar, A., Kumar, P., 2015, “A review on the mechanical properties, tribological behavior and the microstructural characterization of Aluminium metal matrix composites (AMMCs)”, Int J Sci Eng Res, Vol. 6, No. 6, 1234-1245.
  • Latief, F.H., Sherif, E.S.M., Almajid, A.A., Junaedi, H., 2011, “Fabrication of exfoliated graphite nanoplatelets-reinforced aluminum composites and evaluating their mechanical properties and corrosion behavior”, J Anal Appl Pyrolysis, Vol. 92, No.2, pp. 485-492.
  • Lawrance, C.A., Suresh Prabhu P., 2015, “Al 6061-TiB2 metal matrix composite synthesized with different reaction holding times by in-situ method”, Int J Compos Mater, Vol. 5, No. 5, pp. 97-101.
  • Lyman T., 1973, Metallography, structures and phase diagrams, Metals handbook, Vol. 8, Metals Park, OH: American Society for Metals.
  • Meng, F., Wang, Z., Zhao, Y., Zhang, D., Zhang, W., 2017, “Microstructures and properties evolution of Al-Cu-Mn alloy with addition of vanadium”, Metals, Vol. 7, No. 1, pp. 10.
  • Pérez-Bustamante, R., Pérez-Bustamante, F., Estrada-Guel, I., Santillán-Rodríguez, C.R., Matutes-Aquino, J.A., Herrera-Ramírez, J.M., Miki-Yoshida, M., Martínez-Sánchez, R., 2011, “Characterization of Al2024-CNTs composites produced by mechanical alloying”, Powder Technol, Vol. 212, No. 3, pp. 390-396.
  • Pérez-Bustamante, R., Pérez-Bustamante, F., Estrada-Guel, I., Licea-Jiménez, L., Miki-Yoshida, M., Martínez-Sánchez, R., 2013, “Effect of milling time and CNT concentration on hardness of CNT/Al2024 composites produced by mechanical alloying”, Mater Charact, Vol. 75, pp. 13-19.
  • Prashantha, H.G., Kumar, M., Xavior, A., 2014, “Graphene reinforced metal matrix composite (GRMMC): A Review”, Procedia Eng, Vol. 97, 1033-1040.
  • Rafiee, M.A., Rafiee, J., Srivastava, I., Wang, Z., Song, H.H., Yu, Z.Z., Koratkar, N., 2010, “Fracture and fatigue in graphene nanocomposites”, Small, Vol. 6, No. 2, pp. 179-183.
  • Saravanan, C., Subramanian, K., Ananda Krishnan, V., Sankara Narayanan, R., 2015, “Effect of particulate reinforced Aluminum metal matrix composite”, Mech Mech Eng, Vol. 19, No. 1, 23-30.
  • Suryanarayana, C. M., 2001, “Mechanical alloying and milling”, Prog Mater Sci, Vol. 46, No. 1-2, pp. 1-184.
  • Varol, T., Çanakçı, A., 2015, Microstructure, electrical conductivity and hardness of multilayer graphene/copper nanocomposites synthesized by flake powder metallurgy, Met Mater Int, Vol. 21, No. 4, 704-712.
  • Woo, K. D., Zhang, D.L., 2004, “Fabrication of Al–7wt%Si–0.4wt%Mg/SiC nanocomposite powders and bulk nanocomposites by high energy ball milling and powder metallurgy”, Curr Appl Phys, Vol. 4, No. 2-4, pp. 175-178.
  • Yazdian, N., Karimzadeh, F., Tavoosi, M., 2014, “Fabrication and precipitation hardening characterization of nanostructure Al7075 alloy”, Indian J Eng Mater Sci, Vol. 21, pp. 30-34.

Powder Metallurgical Fabrication and Characterization of Graphene Nano Platelets Reinforced Al- 5.5Cu-0.5Mn Matrix Composites

Yıl 2021, Cilt: 9 Sayı: 2, 403 - 415, 01.06.2021
https://doi.org/10.36306/konjes.841024

Öz

In this study, graphene nano platelets (GNPs) reinforced Al-5.5wt.%Cu-0.5wt.%Mn matrix composites were produced by the powder metallurgy method. Al-5.5Cu-0.5Mn-xGNP (x: 0, 0,5 1 ve 2 wt.%) composite powders produced by mechanical alloying of the starting powders up to 8 h were pre- compacted via uniaxial pressing under 650 MPa and subsequently pressurelessly sintered at 600 °C for 2 hours under Ar atmosphere. The microstructural, mechanical and corrosion properties of Al-5.5Cu-0.5Mn-xGNP composites were investigated via X-ray diffractometer (XRD), scanning electron microscope-energy dispersive spectrometer (SEM-EDS), microhardness and corrosion tests, respectively.
Al2Cu intermetallic phase was detected in the microstructure of the composites and carbide phase formation was observed in the mechanically alloyed composites. The optimum mechanical alloying duration was determined as 4 hours and it was observed that the hardness of these composites increased by the increasing graphene amount and reached to 123 HV for Al-5.5Cu-0.5Mn-2GNP sample. Moreover, the corrosion resistance of Al-based matrix worsened by the graphene addition.

Proje Numarası

118M185

Kaynakça

  • Akçamlı, N., Küçükelyas, B., Kaykılarlı, C., Uzunsoy, D., 2019, “Investigation of microstructural, mechanical and corrosion properties of graphene nanoplatelets reinforced Al matrix composites”, Mater Res Express, Vol. 6, No. 11, pp. 115627.
  • Bodunrin, M.O., Alaneme, K.K., Chown, L.H., 2015, “Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics”, J Mater Res Technol, Vol. 4, No. 4, pp. 434-445.
  • Davis, J.R., 1993, ASM Specialty Handbook: Aluminum and Aluminum Alloys (2. Basım), ASM International.
  • Doel, T.J.A., Bowen, P., 1996, “Tensile properties of particulate-reinforced metal matrix composites”, Composites Part A, Vol. 27, No. 8, pp.655-665.
  • Edwards, R.S., Coleman, K.S., 2013, “Graphene synthesis: relationship to applications”, Nanoscale, Vol. 5, No. 1, pp. 38-51.
  • Eisenhauer E.M. and Gan Y.X., 2019, Corrosion behavior of a carbon network/aluminum matrix porous composite in salinated and acidic environments, Chem Eng, Vol. 3, No. 2, pp. 54.
  • Tekoğlu, E., Ağaoğulları, D. Öveçoğlu, M.L., 2020. Characterization investigations of the mechanically alloyed and sequentially milled Al-12.6 wt.% Si eutectic alloy powders, Particul Sci Tech, Vol. 38, No. 1, pp.15-22.
  • Fogagnolo, J.B., Velasco, F., Robert, M.H., Torralba, J.M., 2003, “Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders”, Mater Sci Eng, A, Vol. 342, No. 1-2, pp. 131-143.
  • Hosseini, N., Abbasi, M. H., Karimzadeh, F., Enayati, M. H. 2009, “Structural evolution and grain growth kinetics during isothermal heat treatment of nanostructured Al6061”, Mater Sci Eng, A, 525 (1-2), 107-111.
  • Jafari, M., Enayati, M.H., Abbasi, M.H., Karimzadeh, F., 2009, “Thermal stability and structural changes during heat treatment of nanostructured Al2024 alloy”, J. Alloys Compd., Vol. 478, No.1-2, pp. 260-264.
  • Jones, A.R., 2001, “Mechanical Alloying”, Encyclopedia of Materials: Science and Technology, Editör: Greg, P., Encyclopedia of materials: science and technology, Elsevier BV, 1-5.
  • Kaczmar, J.W., Pietrzak, K., Włosiński, W., 2000, “The production and application of metal matrix composite materials”, J Mater Process Technol, Vol. 106, No. 1–3, pp. 58-67.
  • Kumar, A., Kumar, P., 2015, “A review on the mechanical properties, tribological behavior and the microstructural characterization of Aluminium metal matrix composites (AMMCs)”, Int J Sci Eng Res, Vol. 6, No. 6, 1234-1245.
  • Latief, F.H., Sherif, E.S.M., Almajid, A.A., Junaedi, H., 2011, “Fabrication of exfoliated graphite nanoplatelets-reinforced aluminum composites and evaluating their mechanical properties and corrosion behavior”, J Anal Appl Pyrolysis, Vol. 92, No.2, pp. 485-492.
  • Lawrance, C.A., Suresh Prabhu P., 2015, “Al 6061-TiB2 metal matrix composite synthesized with different reaction holding times by in-situ method”, Int J Compos Mater, Vol. 5, No. 5, pp. 97-101.
  • Lyman T., 1973, Metallography, structures and phase diagrams, Metals handbook, Vol. 8, Metals Park, OH: American Society for Metals.
  • Meng, F., Wang, Z., Zhao, Y., Zhang, D., Zhang, W., 2017, “Microstructures and properties evolution of Al-Cu-Mn alloy with addition of vanadium”, Metals, Vol. 7, No. 1, pp. 10.
  • Pérez-Bustamante, R., Pérez-Bustamante, F., Estrada-Guel, I., Santillán-Rodríguez, C.R., Matutes-Aquino, J.A., Herrera-Ramírez, J.M., Miki-Yoshida, M., Martínez-Sánchez, R., 2011, “Characterization of Al2024-CNTs composites produced by mechanical alloying”, Powder Technol, Vol. 212, No. 3, pp. 390-396.
  • Pérez-Bustamante, R., Pérez-Bustamante, F., Estrada-Guel, I., Licea-Jiménez, L., Miki-Yoshida, M., Martínez-Sánchez, R., 2013, “Effect of milling time and CNT concentration on hardness of CNT/Al2024 composites produced by mechanical alloying”, Mater Charact, Vol. 75, pp. 13-19.
  • Prashantha, H.G., Kumar, M., Xavior, A., 2014, “Graphene reinforced metal matrix composite (GRMMC): A Review”, Procedia Eng, Vol. 97, 1033-1040.
  • Rafiee, M.A., Rafiee, J., Srivastava, I., Wang, Z., Song, H.H., Yu, Z.Z., Koratkar, N., 2010, “Fracture and fatigue in graphene nanocomposites”, Small, Vol. 6, No. 2, pp. 179-183.
  • Saravanan, C., Subramanian, K., Ananda Krishnan, V., Sankara Narayanan, R., 2015, “Effect of particulate reinforced Aluminum metal matrix composite”, Mech Mech Eng, Vol. 19, No. 1, 23-30.
  • Suryanarayana, C. M., 2001, “Mechanical alloying and milling”, Prog Mater Sci, Vol. 46, No. 1-2, pp. 1-184.
  • Varol, T., Çanakçı, A., 2015, Microstructure, electrical conductivity and hardness of multilayer graphene/copper nanocomposites synthesized by flake powder metallurgy, Met Mater Int, Vol. 21, No. 4, 704-712.
  • Woo, K. D., Zhang, D.L., 2004, “Fabrication of Al–7wt%Si–0.4wt%Mg/SiC nanocomposite powders and bulk nanocomposites by high energy ball milling and powder metallurgy”, Curr Appl Phys, Vol. 4, No. 2-4, pp. 175-178.
  • Yazdian, N., Karimzadeh, F., Tavoosi, M., 2014, “Fabrication and precipitation hardening characterization of nanostructure Al7075 alloy”, Indian J Eng Mater Sci, Vol. 21, pp. 30-34.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Nazlı Akçamlı 0000-0002-8638-3756

Proje Numarası 118M185
Yayımlanma Tarihi 1 Haziran 2021
Gönderilme Tarihi 15 Aralık 2020
Kabul Tarihi 1 Şubat 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 9 Sayı: 2

Kaynak Göster

IEEE N. Akçamlı, “GRAFEN NANO PLAKALARLA TAKVİYE EDİLMİŞ Al-5,5Cu-0,5Mn MATRİSLİ KOMPOZİTLERİN TOZ METALURJİSİ İLE ÜRETİMİ VE KARAKTERİZASYONU”, KONJES, c. 9, sy. 2, ss. 403–415, 2021, doi: 10.36306/konjes.841024.