Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparative Performance Analysis of Combined Power Systems Trilateral Cycle-Organic Rankine Cycle (TLC-ORC) and Organic Rankine Cycle Organic Rankine Cycle (ORC-ORC)

Yıl 2021, Cilt: 9 Sayı: 3, 647 - 665, 01.09.2021
https://doi.org/10.36306/konjes.925717

Öz

One of the most widely used to generate power using heat energy or waste heat energy from renewable energy sources is the Organic Rankine cycle. The Trilateral Cycle differs from the Organic Rankine cycle in that it uses an expander instead of a turbine element. In this study, the structures of Trilateral cycle - Organic Rankine cycle and Organic Rankine cycle - Organic Rankine cycle combined power systems were examined and thermodynamic analyzes were made with the help of Engineering Equation Solver (EES) program. For each combined power system, the fluid pairs that maximize the system performance at different temperatures of the geothermal source and sub-cycle evaporator were determined and the results of the combined power systems using these determined fluid pairs were compared. According to the results of the research, it was determined that there are pairs of fluids that maximize the thermal efficiency and / or the net power obtained from the system for each operating condition. It was determined that at temperatures of 100-280 oC of the geothermal resource, the combined power system was evaporating hot, which maximized the net power. Depending on the working conditions, it was determined that the net power output of ORC-ORC was up to until 23.5 % higher than TLC-ORC.

Kaynakça

  • Apostol V., Pop, H., Dobrovicescu, A., Prisecaru, T., Alexandru, A. ve Prisecaru, M., "Thermodynamic Analysis of ORC Configurations Used For WHR from a Turbocharged diesel engine", 25th DAAAM International Symposium on Intelligent Manufacturing and Automation, Austria, Vienna, 549-558, 20-29 November 2014.
  • Bao J ve Zhao L., 2013, "A review of working fluid and expander selections for organic Rankine cycle", Ren. And Sus. En, Rev, Vol. 24, pp. 325-342.
  • Braimakis, K. ve Karellas, S., 2018, "Exergetic optimization of double stage Organic Rankine Cycle (ORC)", Energy, Vol. 149, pp. 296-313.
  • Hoang A.T., 2018, "Waste heat recovery from diesel engines based on Organic Rankine Cycle" App. En., Vol. 231, pp. 138-166.
  • Li, Z., Huang, R., Lu, Y., Roskilly, A.P. ve Yu, X., 2019, "Analysis of a combined trilateral cycle - organik Rankine cycle (TLC-ORC) system for waste heat recovery", Energy Procedia, Vol. 158, pp. 1786-1791.
  • Lu, X., Zhao, Y., Zhu, J. ve Zhang, W., 2018, "Optimization and applicability of compound power cycles for enhanced geothermal systems", App. En., Vol. 229, pp. 128-141.
  • Mohammadkhani, F. ve Yari, M., 2019, "A 0D model for diesel engine simulation and employing a transcritical dual loop Organic Rankine Cycle (ORC) for waste heat recovery from its exhaust and coolant: Thermodynamic and economic analysis", App. Ther. Eng., Vol. 150, pp. 329-347.
  • Song, J. ve Gu, C., 2015, "Parametric analysis of a dual loop Organic Rankine Cycle (ORC) system for engine waste heat recovery", Energy Conversion and Management, Vol. 105, pp. 995-1005.
  • Sun J, Liua Q ve Duan Y., 2018, "Effects of evaporator pinch point temperature difference on thermoeconomic performance of geothermal organic Rankine cycle systems", Geothermics, Vol. 75, pp. 249-258.
  • Sung, T., Yun, E., Kim, H.D., Yoon, S.Y., Choi, B.S., Kim, K., Kim, J., Jung, Y.B. ve Kim, K.C., 2016, "Performance characteristics of a 200-kW organic Rankine cycle system in a steel processing plant", Applied Energy, Vol. 183, pp. 623-635.
  • S Klein ve S A 2019. EES (Engineering Equation Solver), Academic Professional Version, F-Chart Software Madison, WI, USA.
  • Şahin, R., Ata S. ve Kahraman A., 2018, "Organik Rankine Çevriminde Farklı Tip Akışkanlarda Türbin Giriş Sıcaklığı ve Basıncının Sistem Bileşenlerindeki Tersinmezlik Değerlerine Etkisinin Belirlenmesi", Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, Vol. 33, No:2, pp. 225-236.
  • Wang, E. H., Zhang H. G., Fan, B. Y., Ouyang, M. G., Yang F. Y., Yang, K., Wang, Z. Zhang J., ve Yang, F. B., 2014, "Parametric analysis of a dual-loop ORC system for waste heat recovery of a diesel engine", App. Ther. Eng., Vol. 67, pp. 168-178.
  • Yang, F., Zhang, H., Yu, Z., Wang, E., Meng, F., Liu, H. ve Wang, J., 2017a, "Parametric optimization and heat transfer analysis of a dual loop ORC (organic Rankine cycle) system for CNG engine waste heat recovery", Energy, Vol. 113, pp. 753-775.
  • Yang, F., Cho, H., Zhang, H. ve Zhang, J., 2017b, Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery, Applied Energy, Vol. 205, pp. 1100-1118.
  • Yu, X., Li, Z., Lu, Y., Huang, R. ve Roskilly, A. P., 2018, "Investigation of an Innovative Cascade Cycle Combining a Trilateral Cycle and an Organic Rankine Cycle (TLC-ORC) for Industry or Transport Application", Energies, Vol. 11, pp. 3032.
  • Zeynali A, Akbari, A ve Khalilian M., 2019, "Investigation of the performance of modified organic Rankine cycles (ORCs) and modified trilateral flash cycles (TFCs) assisted by a solar pond", Solar Energy, Vol. 182 pp. 361-381.
  • Zhang X, Wua Y, Lia Z ve Chen Y., 2019, "A hybrid flue gas heat recovery system based on vapor compression refrigeration and liquid desiccant dehumidification", En. Con. And Man., Vol. 195 pp. 157-166.

TRİLATERAL ÇEVRİM-ORGANİK RANKİNE ÇEVRİM (TLÇ-ORÇ) VE ORGANİK RANKİNE ÇEVRİM-ORGANİK RANKİNE ÇEVRİM (ORÇ-ORÇ) BİRLEŞİK GÜÇ SİSTEMLERİNİN KARŞILAŞTIRMALI PERFORMANS ANALİZİ

Yıl 2021, Cilt: 9 Sayı: 3, 647 - 665, 01.09.2021
https://doi.org/10.36306/konjes.925717

Öz

Yenilenebilir enerji kaynaklarının ısı enerjisini veya atık ısı enerjisini kullanarak güç üretmek için en yaygın kullanılanlardan biri Organik Rankine çevrimidir. Trilateral Çevrim ise Organik Rankine çevriminden türbin elemanı yerine genleştirici kullanılması yönüyle ayrılır. Bu çalışmada, Trilateral çevrim - Organik Rankine çevrim ve Organik Rankine çevrim - Organik Rankine çevrim birleşik güç sistemlerinin yapıları incelenerek Engineering Equation Solver (EES) programı yardımı ile termodinamik analizleri yapıldı. Her bir birleşik güç sistem için jeotermal kaynağın ve alt çevrim evaporatörünün farklı sıcaklık değerlerinde sistem performansını maksimum yapan akışkan çiftleri belirlendi ve bu belirlenen akışkan çiftleri kullanan birleşik güç sistemlerinin sonuçları karşılaştırıldı. Araştırma sonuçlarına göre, her bir çalışma şartı için ısıl verimi ve/veya sistemden elde edilen net gücü maksimum yapan akışkan çiftleri olduğu tespit edildi. Jeotermal kaynağın 100-280 oC sıcaklıklarında birleşik güç sisteminin net gücünü maksimum yapan alt çevrim evaporatör sıcaklığının olduğu tespit edildi. Çalışma şartlarına bağlı olarak ORÇ-ORÇ’nin net güç çıktısının TLÇ-ORÇ’ye göre % 23,5’e kadar daha yüksek olduğu belirlendi.

Kaynakça

  • Apostol V., Pop, H., Dobrovicescu, A., Prisecaru, T., Alexandru, A. ve Prisecaru, M., "Thermodynamic Analysis of ORC Configurations Used For WHR from a Turbocharged diesel engine", 25th DAAAM International Symposium on Intelligent Manufacturing and Automation, Austria, Vienna, 549-558, 20-29 November 2014.
  • Bao J ve Zhao L., 2013, "A review of working fluid and expander selections for organic Rankine cycle", Ren. And Sus. En, Rev, Vol. 24, pp. 325-342.
  • Braimakis, K. ve Karellas, S., 2018, "Exergetic optimization of double stage Organic Rankine Cycle (ORC)", Energy, Vol. 149, pp. 296-313.
  • Hoang A.T., 2018, "Waste heat recovery from diesel engines based on Organic Rankine Cycle" App. En., Vol. 231, pp. 138-166.
  • Li, Z., Huang, R., Lu, Y., Roskilly, A.P. ve Yu, X., 2019, "Analysis of a combined trilateral cycle - organik Rankine cycle (TLC-ORC) system for waste heat recovery", Energy Procedia, Vol. 158, pp. 1786-1791.
  • Lu, X., Zhao, Y., Zhu, J. ve Zhang, W., 2018, "Optimization and applicability of compound power cycles for enhanced geothermal systems", App. En., Vol. 229, pp. 128-141.
  • Mohammadkhani, F. ve Yari, M., 2019, "A 0D model for diesel engine simulation and employing a transcritical dual loop Organic Rankine Cycle (ORC) for waste heat recovery from its exhaust and coolant: Thermodynamic and economic analysis", App. Ther. Eng., Vol. 150, pp. 329-347.
  • Song, J. ve Gu, C., 2015, "Parametric analysis of a dual loop Organic Rankine Cycle (ORC) system for engine waste heat recovery", Energy Conversion and Management, Vol. 105, pp. 995-1005.
  • Sun J, Liua Q ve Duan Y., 2018, "Effects of evaporator pinch point temperature difference on thermoeconomic performance of geothermal organic Rankine cycle systems", Geothermics, Vol. 75, pp. 249-258.
  • Sung, T., Yun, E., Kim, H.D., Yoon, S.Y., Choi, B.S., Kim, K., Kim, J., Jung, Y.B. ve Kim, K.C., 2016, "Performance characteristics of a 200-kW organic Rankine cycle system in a steel processing plant", Applied Energy, Vol. 183, pp. 623-635.
  • S Klein ve S A 2019. EES (Engineering Equation Solver), Academic Professional Version, F-Chart Software Madison, WI, USA.
  • Şahin, R., Ata S. ve Kahraman A., 2018, "Organik Rankine Çevriminde Farklı Tip Akışkanlarda Türbin Giriş Sıcaklığı ve Basıncının Sistem Bileşenlerindeki Tersinmezlik Değerlerine Etkisinin Belirlenmesi", Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, Vol. 33, No:2, pp. 225-236.
  • Wang, E. H., Zhang H. G., Fan, B. Y., Ouyang, M. G., Yang F. Y., Yang, K., Wang, Z. Zhang J., ve Yang, F. B., 2014, "Parametric analysis of a dual-loop ORC system for waste heat recovery of a diesel engine", App. Ther. Eng., Vol. 67, pp. 168-178.
  • Yang, F., Zhang, H., Yu, Z., Wang, E., Meng, F., Liu, H. ve Wang, J., 2017a, "Parametric optimization and heat transfer analysis of a dual loop ORC (organic Rankine cycle) system for CNG engine waste heat recovery", Energy, Vol. 113, pp. 753-775.
  • Yang, F., Cho, H., Zhang, H. ve Zhang, J., 2017b, Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery, Applied Energy, Vol. 205, pp. 1100-1118.
  • Yu, X., Li, Z., Lu, Y., Huang, R. ve Roskilly, A. P., 2018, "Investigation of an Innovative Cascade Cycle Combining a Trilateral Cycle and an Organic Rankine Cycle (TLC-ORC) for Industry or Transport Application", Energies, Vol. 11, pp. 3032.
  • Zeynali A, Akbari, A ve Khalilian M., 2019, "Investigation of the performance of modified organic Rankine cycles (ORCs) and modified trilateral flash cycles (TFCs) assisted by a solar pond", Solar Energy, Vol. 182 pp. 361-381.
  • Zhang X, Wua Y, Lia Z ve Chen Y., 2019, "A hybrid flue gas heat recovery system based on vapor compression refrigeration and liquid desiccant dehumidification", En. Con. And Man., Vol. 195 pp. 157-166.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Nagihan Bilir Sağ 0000-0001-8410-0268

Mehmet Özçelik 0000-0002-5721-032X

Yayımlanma Tarihi 1 Eylül 2021
Gönderilme Tarihi 22 Nisan 2021
Kabul Tarihi 20 Mayıs 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 9 Sayı: 3

Kaynak Göster

IEEE N. Bilir Sağ ve M. Özçelik, “TRİLATERAL ÇEVRİM-ORGANİK RANKİNE ÇEVRİM (TLÇ-ORÇ) VE ORGANİK RANKİNE ÇEVRİM-ORGANİK RANKİNE ÇEVRİM (ORÇ-ORÇ) BİRLEŞİK GÜÇ SİSTEMLERİNİN KARŞILAŞTIRMALI PERFORMANS ANALİZİ”, KONJES, c. 9, sy. 3, ss. 647–665, 2021, doi: 10.36306/konjes.925717.