Research Article
BibTex RIS Cite

Düşük Maliyetli Silika Aerojel Kompozitlerin Morfolojik, Yapısal ve Termal Özellikleri

Year 2021, Volume: 9 Issue: 3, 787 - 796, 01.09.2021
https://doi.org/10.36306/konjes.969489

Abstract

Silika aerojeller günümüzde umut vadeden özellikleriyle birçok alanda ilgi görmektedir. Silika aerojellerin özelliklerini geliştirmek ve malzeme maliyetini azaltmak amacıyla yüksek oranda silika içeren ucuz malzemelerden silika aerojel kompozitlerin hazırlanması gibi yaklaşımlar geliştirilmektedir.
Bu çalışmada sol-jel metodu kullanılarak polietilen glikol (PEG)/silika ve karbon siyahı (CB)/silika aerojel kompozitler kolayca hazırlanmıştır. Kompozitlerin morfolojik özellikleri alan emisyonlu taramalı elektron mikroskobu (FESEM) analizi ile incelenmiştir. PEG ve CB ilavesinin, silika aerojelin yapısal özellikleri üzerinde olumlu etkileri olmuştur. PEG ve CB ilavesiyle silika aerojelin spesifik yüzey alanı 477 m2/g’den sırasıyla 541 m2/g ve 553 m2/g’ye artmıştır. Ayrıca silika aerojel kompozitler, silika aerojelden daha yüksek gözenek hacmi ve gözenek boyutu göstermiştir. En yüksek termal kararlığı CB/silika aerojel kompozitin gösterdiği belirlenmiştir. Malzemelerin yoğunluğuna bağlı olarak PEG ve CB ilavesiyle silika aerojelin termal iletkenliği (0.035 W/m K) kısmen artmıştır. PEG/silika ve CB/silika aerojel kompozitlerin yoğunluğu sırasıyla 0.048 g/cm3 ve 0.067 g/cm3 olarak belirlenmiştir. Elde edilen sonuçlar silika aerojel kompozitlerin sahip oldukları olumlu özellikleri sayesinde birçok uygulamada kullanılabileceğini göstermiştir.

References

  • Abdul Halim, Z. A., Mat Yajid, M. A., Idris, M. H., Hamdan, H., 2017, "Effects of silica aerogel particle sizes on the thermal–mechanical properties of silica aerogel – unsaturated polyester composites", Plastics, Rubber and Composites, 46, 184-192.
  • Acosta-Rangel, A., Sánchez-Polo, M., Polo, A. M. S., Rivera-Utrilla, J., Berber-Mendoza, M. S., 2018, "Tinidazole degradation assisted by solar radiation and iron-doped silica xerogels", Chemical Engineering Journal, 344, 21-33.
  • Aegerter, M. A., Leventis, N., Koebel, M. M., 2011, "Aerogels Handbook", Springer, London, 118-119.
  • Affandi, S., Setyawan, H., Winardi, S., Purwanto, A., Balgis, R., 2009, "A facile method for production of high-purity silica xerogels from bagasse ash", Advanced Powder Technology, 20, 468-472.
  • Al-Oweini, R., El-Rassy, H., 2009, "Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R′′Si(OR′)3 precursors", Journal of Molecular Structure, 919, 140-145.
  • Alothman, Z., 2012, "A Review: Fundamental Aspects of Silicate Mesoporous Materials", Materials, 5, 2874-2902.
  • Aravind, P. R., Shajesh, P., Soraru, G. D., Warrier, K. G. K., 2010, "Ambient pressure drying: a successful approach for the preparation of silica and silica based mixed oxide aerogels", Journal of Sol-Gel Science and Technology, 54, 105-117.
  • Bangi, U. K., Venkateswara Rao, A., Parvathy Rao, A., 2008, "A new route for preparation of sodium- silicate-based hydrophobic silica aerogels via ambient-pressure drying", Science and Technology of Advanced Materials, 9, 035006.
  • Casula, M. F., Corrias, A., Paschina, G., 2011, "Nickel oxide–silica and nickel–silica aerogel and xerogel nanocomposite materials", Journal of Materials Research, 15, 2187-2194.
  • Choi, H., Parale, V. G., Kim, T., Choi, Y.-S., Tae, J., Park, H.-H., 2020, "Structural and mechanical properties of hybrid silica aerogel formed using triethoxy(1-phenylethenyl)silane", Microporous and Mesoporous Materials, 298, 110092.
  • Durães, L., Maia, A., Portugal, A., 2015, "Effect of additives on the properties of silica based aerogels synthesized from methyltrimethoxysilane (MTMS)", The Journal of Supercritical Fluids, 106, 85-92.
  • Durães, L., Ochoa, M., Rocha, N., Patrício, R., Duarte, N., Redondo, V., et al., 2012, "Effect of the Drying Conditions on the Microstructure of Silica Based Xerogels and Aerogels", Journal of Nanoscience and Nanotechnology, 12, 6828-6834.
  • Gao, G.-M., Liu, D.-R., Zou, H.-F., Zou, L.-C., Gan, S.-C., 2010a, "Preparation of silica aerogel from oil shale ash by fluidized bed drying", Powder Technology, 197, 283-287.
  • Gao, G.-M., Xu, X.-C., Zou, H.-F., Ji, G.-J., Gan, S.-C., 2010b, "Microstructural and physical properties of silica aerogels based on oil shale ash", Powder Technology, 202, 137-142.
  • Ge, D., Yang, L., Li, Y., Zhao, J., 2009, "Hydrophobic and thermal insulation properties of silica aerogel/epoxy composite", Journal of Non-Crystalline Solids, 355, 2610-2615.
  • Goksu, E. I., Hoopes, M. I., Nellis, B. A., Xing, C., Faller, R., Frank, C. W., et al., 2010, "Silica xerogel/aerogel-supported lipid bilayers: consequences of surface corrugation", Biochimica et Biophysica Acta, 1798, 719-29.
  • Gurav, J. L., Jung, I.-K., Park, H.-H., Kang, E. S., Nadargi, D. Y., 2010, "Silica Aerogel: Synthesis and Applications", Journal of Nanomaterials, 2010, 1-11.
  • Guzel Kaya, G., Deveci, H., 2020a, "Effect of Aging Solvents on Physicochemical and Thermal Properties of Silica Xerogels Derived from Steel Slag", ChemistrySelect, 5, 1586-1591.
  • Guzel Kaya, G., Deveci, H., 2020b, "Synergistic effects of silica aerogels/xerogels on properties of polymer composites: A review", Journal of Industrial and Engineering Chemistry, 89, 13-27.
  • Guzel Kaya, G., Yilmaz, E., Deveci, H., 2020, "Synthesis of sustainable silica xerogels/aerogels using inexpensive steel slag and bean pod ash: A comparison study", Advanced Powder Technology, 31, 926-936.
  • Hernandez-Campos, M., Polo, A. M. S., Sanchez-Polo, M., Rivera-Utrilla, J., Berber-Mendoza, M. S., Andrade-Espinosa, G., et al., 2018, "Lanthanum-doped silica xerogels for the removal of fluorides from waters", Journal of Environmental Management, 213, 549-554.
  • Hilonga, A., Kim, J.-K., Sarawade, P. B., Kim, H. T., 2009, "Low-density TEOS-based silica aerogels prepared at ambient pressure using isopropanol as the preparative solvent", Journal of Alloys and Compounds, 487, 744-750.
  • Hu, W., Li, M., Chen, W., Zhang, N., Li, B., Wang, M., et al., 2016, "Preparation of hydrophobic silica aerogel with kaolin dried at ambient pressure", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 501, 83-91.
  • Ilhan, F., Fabrizio, E. F., McCorkle, L., Scheiman, D. A., Dass, A., Palczer, A., et al., 2006, "Hydrophobic monolithic aerogels by nanocasting polystyrene on amine-modified silica", Journal of Materials Chemistry, 16, 3046.
  • Iswar, S., Malfait, W. J., Balog, S., Winnefeld, F., Lattuada, M., Koebel, M. M., 2017, "Effect of aging on silica aerogel properties", Microporous and Mesoporous Materials, 241, 293-302.
  • Jaiboon, V., Yoosuk, B., Prasassarakich, P., 2014, "Amine modified silica xerogel for H2S removal at low temperature", Fuel Processing Technology, 128, 276-282.
  • Jain, A., Rogojevic, S., Ponoth, S., Gill, W. N., Plawsky, J. L., Simonyi, E., et al., 2002, "Processing dependent thermal conductivity of nanoporous silica xerogel films", Journal of Applied Physics, 91, 3275-3281.
  • Kim, H. M., Noh, Y. J., Yu, J., Kim, S. Y., Youn, J. R., 2015, "Silica aerogel/polyvinyl alcohol (PVA) insulation composites with preserved aerogel pores using interfaces between the superhydrophobic aerogel and hydrophilic PVA solution", Composites Part A: Applied Science and Manufacturing, 75, 39-45.
  • Krishnaswamy, S., Tinsley, L., Marchante, V., Addepalli, S., Huang, Z., Abhyankar, H., 2017, "Effect of extrusion and compression moulding on the thermal properties of nylon-6/silica aerogel composites", Journal of Thermoplastic Composite Materials, 31, 992-1009.
  • Krylova, G. V., Gnatyuk, Y. I., Smirnova, N. P., Eremenko, A. M., Gun’ko, V. M., 2009, "Ag nanoparticles deposited onto silica, titania, and zirconia mesoporous films synthesized by sol–gel template method", Journal of Sol-Gel Science and Technology, 50, 216-228.
  • Lei, Y., Chen, X., Hu, Z., Song, H., Cao, B., 2017a, "A general strategy for improving the thermal insulation performance of aerogels by multiple impregnation", Scripta Materialia, 139, 5-8.
  • Lei, Y., Hu, Z., Cao, B., Chen, X., Song, H., 2017b, "Enhancements of thermal insulation and mechanical property of silica aerogel monoliths by mixing graphene oxide", Materials Chemistry and Physics, 187, 183-190.
  • Li, T., Wang, T., 2008, "Preparation of silica aerogel from rice hull ash by drying at atmospheric pressure", Materials Chemistry and Physics, 112, 398-401.
  • Liu, H., Chu, P., Li, H., Zhang, H., Li, J., 2016, "Novel three-dimensional halloysite nanotubes/silica composite aerogels with enhanced mechanical strength and low thermal conductivity prepared at ambient pressure", Journal of Sol-Gel Science and Technology, 80, 651-659.
  • Liu, P., Gao, H., Chen, X., Chen, D., Lv, J., Han, M., et al., 2020, "In situ one-step construction of monolithic silica aerogel-based composite phase change materials for thermal protection", Composites Part B: Engineering, 195, 108072.
  • Maleki, H., Durães, L., García-González, C. A., del Gaudio, P., Portugal, A., Mahmoudi, M., 2016, "Synthesis and biomedical applications of aerogels: Possibilities and challenges", Advances in Colloid and Interface Science, 236, 1-27.
  • Mo, C. M., Li, Y. H., Liu, Y. S., Zhang, Y., Zhang, L. D., 1998, "Enhancement effect of photoluminescence in assemblies of nano-ZnO particles/silica aerogels", Journal of Applied Physics, 83, 4389-4391.
  • Nazeran, N., Moghaddas, J., 2017, "Synthesis and characterization of silica aerogel reinforced rigid polyurethane foam for thermal insulation application", Journal of Non-Crystalline Solids, 461, 1-11.
  • Nazriati, N., Setyawan, H., Affandi, S., Yuwana, M., Winardi, S., 2014, "Using bagasse ash as a silica source when preparing silica aerogels via ambient pressure drying", Journal of Non-Crystalline Solids, 400, 6-11.
  • Perego, C., Millini, R., 2013, "Porous materials in catalysis: challenges for mesoporous materials", Chemical Society Reviews, 42, 3956-76.
  • Pisal, A. A., Rao, A. V., 2016, "Comparative studies on the physical properties of TEOS, TMOS and Na2SiO3 based silica aerogels by ambient pressure drying method", Journal of Porous Materials, 23, 1547-1556.
  • Popovici, M., Gich, M., Roig, A., Casas, L., Molins, E., Savii, C., et al., 2004, "Ultraporous Single Phase Iron Oxide-Silica Nanostructured Aerogels from Ferrous Precursors", Langmuir, 20, 1425-1429.
  • Rezaei, S., Zolali, A. M., Jalali, A., Park, C. B., 2020, "Novel and simple design of nanostructured, super- insulative and flexible hybrid silica aerogel with a new macromolecular polyether-based precursor", Journal of Colloid and Interface Science, 561, 890-901.
  • Sachithanadam, M., Chandrakant Joshi, S., 2016, "Silica Aerogel Composites", Springer, Singapore, 15-17.
  • Shi, F., Liu, J.-X., Song, K., Wang, Z.-Y., 2010, "Cost-effective synthesis of silica aerogels from fly ash via ambient pressure drying", Journal of Non-Crystalline Solids, 356, 2241-2246.
  • Suchithra, P. S., Vazhayal, L., Peer Mohamed, A., Ananthakumar, S., 2012, "Mesoporous organic– inorganic hybrid aerogels through ultrasonic assisted sol–gel intercalation of silica–PEG in bentonite for effective removal of dyes, volatile organic pollutants and petroleum products from aqueous solution", Chemical Engineering Journal, 200-202, 589-600.
  • Talebi, Z., Soltani, P., Habibi, N., Latifi, F., 2019, "Silica aerogel/polyester blankets for efficient sound absorption in buildings", Construction and Building Materials, 220, 76-89.
  • Ubeyitogullari, A., Ciftci, O. N., 2016, "Formation of nanoporous aerogels from wheat starch", Carbohydrate Polymers, 147, 125-32.
  • Wu, W., Wang, K., Zhan, M.-S., 2012, "Preparation and Performance of Polyimide-Reinforced Clay Aerogel Composites", Industrial & Engineering Chemistry Research, 51, 12821-12826.
  • Zhang, J., Wang, J., Yang, C., Jia, H., Cui, X., Zhao, S., et al., 2017, "Mesoporous SiO2/VO2 double-layer thermochromic coating with improved visible transmittance for smart window", Solar Energy Materials and Solar Cells, 162, 134-141.
  • Zhao, J.-J., Duan, Y.-Y., Wang, X.-D., Zhang, X.-R., Han, Y.-H., Gao, Y.-B., et al., 2013, "Optical and radiative properties of infrared opacifier particles loaded in silica aerogels for high temperature thermal insulation", International Journal of Thermal Sciences, 70, 54-64.
  • Zhu, J., Xie, J., Lü, X., Jiang, D., 2009, "Synthesis and characterization of superhydrophobic silica and silica/titania aerogels by sol–gel method at ambient pressure", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 342, 97-101.
  • Zinzi, M., Rossi, G., Anderson, A. M., Carroll, M. K., Moretti, E., Buratti, C., 2019, "Optical and visual experimental characterization of a glazing system with monolithic silica aerogel", Solar Energy, 183, 30-39.

MORPHOLOGICAL, TEXTURAL AND THERMAL PROPERTIES OF LOW-COST SILICA AEROGEL COMPOSITES

Year 2021, Volume: 9 Issue: 3, 787 - 796, 01.09.2021
https://doi.org/10.36306/konjes.969489

Abstract

Nowadays, silica aerogels with promising properties have gained interest in many fields.
To enhance properties of the silica aerogels and reduce material cost, many approaches such as preparation of silica aerogels composites using low-cost precursors rich in silica have been developed. In this study, polyethylene glycol (PEG)/silica and carbon black (CB)/silica aerogel composites were easily prepared by sol-gel method. Morphological properties of the composites were investigated by field emission scanning electron microscopy (FESEM) analysis. PEG and CB incorporation improved textural properties of the silica aerogel. Specific surface area of the silica aerogel was increased from 477 m2/g to 541 m2/g and 553 m2/g with the addition of PEG and CB, respectively. Moreover, silica aerogel composites showed higher pore volume and pore size than silica aerogel. It was determined that CB/silica aerogel composite exhibited the highest thermal stability. Thermal conductivity of the silica aerogel (0.035 W/m K) slightly increased with PEG and CB addition highly depending on bulk density. The bulk density of PEG/silica and CB/silica aerogel composites was specified as 0.048 g/cm3 and 0.067 g/cm3, respectively. The obtained results showed that silica aerogel composites with hopeful properties can be used in many applications.

References

  • Abdul Halim, Z. A., Mat Yajid, M. A., Idris, M. H., Hamdan, H., 2017, "Effects of silica aerogel particle sizes on the thermal–mechanical properties of silica aerogel – unsaturated polyester composites", Plastics, Rubber and Composites, 46, 184-192.
  • Acosta-Rangel, A., Sánchez-Polo, M., Polo, A. M. S., Rivera-Utrilla, J., Berber-Mendoza, M. S., 2018, "Tinidazole degradation assisted by solar radiation and iron-doped silica xerogels", Chemical Engineering Journal, 344, 21-33.
  • Aegerter, M. A., Leventis, N., Koebel, M. M., 2011, "Aerogels Handbook", Springer, London, 118-119.
  • Affandi, S., Setyawan, H., Winardi, S., Purwanto, A., Balgis, R., 2009, "A facile method for production of high-purity silica xerogels from bagasse ash", Advanced Powder Technology, 20, 468-472.
  • Al-Oweini, R., El-Rassy, H., 2009, "Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R′′Si(OR′)3 precursors", Journal of Molecular Structure, 919, 140-145.
  • Alothman, Z., 2012, "A Review: Fundamental Aspects of Silicate Mesoporous Materials", Materials, 5, 2874-2902.
  • Aravind, P. R., Shajesh, P., Soraru, G. D., Warrier, K. G. K., 2010, "Ambient pressure drying: a successful approach for the preparation of silica and silica based mixed oxide aerogels", Journal of Sol-Gel Science and Technology, 54, 105-117.
  • Bangi, U. K., Venkateswara Rao, A., Parvathy Rao, A., 2008, "A new route for preparation of sodium- silicate-based hydrophobic silica aerogels via ambient-pressure drying", Science and Technology of Advanced Materials, 9, 035006.
  • Casula, M. F., Corrias, A., Paschina, G., 2011, "Nickel oxide–silica and nickel–silica aerogel and xerogel nanocomposite materials", Journal of Materials Research, 15, 2187-2194.
  • Choi, H., Parale, V. G., Kim, T., Choi, Y.-S., Tae, J., Park, H.-H., 2020, "Structural and mechanical properties of hybrid silica aerogel formed using triethoxy(1-phenylethenyl)silane", Microporous and Mesoporous Materials, 298, 110092.
  • Durães, L., Maia, A., Portugal, A., 2015, "Effect of additives on the properties of silica based aerogels synthesized from methyltrimethoxysilane (MTMS)", The Journal of Supercritical Fluids, 106, 85-92.
  • Durães, L., Ochoa, M., Rocha, N., Patrício, R., Duarte, N., Redondo, V., et al., 2012, "Effect of the Drying Conditions on the Microstructure of Silica Based Xerogels and Aerogels", Journal of Nanoscience and Nanotechnology, 12, 6828-6834.
  • Gao, G.-M., Liu, D.-R., Zou, H.-F., Zou, L.-C., Gan, S.-C., 2010a, "Preparation of silica aerogel from oil shale ash by fluidized bed drying", Powder Technology, 197, 283-287.
  • Gao, G.-M., Xu, X.-C., Zou, H.-F., Ji, G.-J., Gan, S.-C., 2010b, "Microstructural and physical properties of silica aerogels based on oil shale ash", Powder Technology, 202, 137-142.
  • Ge, D., Yang, L., Li, Y., Zhao, J., 2009, "Hydrophobic and thermal insulation properties of silica aerogel/epoxy composite", Journal of Non-Crystalline Solids, 355, 2610-2615.
  • Goksu, E. I., Hoopes, M. I., Nellis, B. A., Xing, C., Faller, R., Frank, C. W., et al., 2010, "Silica xerogel/aerogel-supported lipid bilayers: consequences of surface corrugation", Biochimica et Biophysica Acta, 1798, 719-29.
  • Gurav, J. L., Jung, I.-K., Park, H.-H., Kang, E. S., Nadargi, D. Y., 2010, "Silica Aerogel: Synthesis and Applications", Journal of Nanomaterials, 2010, 1-11.
  • Guzel Kaya, G., Deveci, H., 2020a, "Effect of Aging Solvents on Physicochemical and Thermal Properties of Silica Xerogels Derived from Steel Slag", ChemistrySelect, 5, 1586-1591.
  • Guzel Kaya, G., Deveci, H., 2020b, "Synergistic effects of silica aerogels/xerogels on properties of polymer composites: A review", Journal of Industrial and Engineering Chemistry, 89, 13-27.
  • Guzel Kaya, G., Yilmaz, E., Deveci, H., 2020, "Synthesis of sustainable silica xerogels/aerogels using inexpensive steel slag and bean pod ash: A comparison study", Advanced Powder Technology, 31, 926-936.
  • Hernandez-Campos, M., Polo, A. M. S., Sanchez-Polo, M., Rivera-Utrilla, J., Berber-Mendoza, M. S., Andrade-Espinosa, G., et al., 2018, "Lanthanum-doped silica xerogels for the removal of fluorides from waters", Journal of Environmental Management, 213, 549-554.
  • Hilonga, A., Kim, J.-K., Sarawade, P. B., Kim, H. T., 2009, "Low-density TEOS-based silica aerogels prepared at ambient pressure using isopropanol as the preparative solvent", Journal of Alloys and Compounds, 487, 744-750.
  • Hu, W., Li, M., Chen, W., Zhang, N., Li, B., Wang, M., et al., 2016, "Preparation of hydrophobic silica aerogel with kaolin dried at ambient pressure", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 501, 83-91.
  • Ilhan, F., Fabrizio, E. F., McCorkle, L., Scheiman, D. A., Dass, A., Palczer, A., et al., 2006, "Hydrophobic monolithic aerogels by nanocasting polystyrene on amine-modified silica", Journal of Materials Chemistry, 16, 3046.
  • Iswar, S., Malfait, W. J., Balog, S., Winnefeld, F., Lattuada, M., Koebel, M. M., 2017, "Effect of aging on silica aerogel properties", Microporous and Mesoporous Materials, 241, 293-302.
  • Jaiboon, V., Yoosuk, B., Prasassarakich, P., 2014, "Amine modified silica xerogel for H2S removal at low temperature", Fuel Processing Technology, 128, 276-282.
  • Jain, A., Rogojevic, S., Ponoth, S., Gill, W. N., Plawsky, J. L., Simonyi, E., et al., 2002, "Processing dependent thermal conductivity of nanoporous silica xerogel films", Journal of Applied Physics, 91, 3275-3281.
  • Kim, H. M., Noh, Y. J., Yu, J., Kim, S. Y., Youn, J. R., 2015, "Silica aerogel/polyvinyl alcohol (PVA) insulation composites with preserved aerogel pores using interfaces between the superhydrophobic aerogel and hydrophilic PVA solution", Composites Part A: Applied Science and Manufacturing, 75, 39-45.
  • Krishnaswamy, S., Tinsley, L., Marchante, V., Addepalli, S., Huang, Z., Abhyankar, H., 2017, "Effect of extrusion and compression moulding on the thermal properties of nylon-6/silica aerogel composites", Journal of Thermoplastic Composite Materials, 31, 992-1009.
  • Krylova, G. V., Gnatyuk, Y. I., Smirnova, N. P., Eremenko, A. M., Gun’ko, V. M., 2009, "Ag nanoparticles deposited onto silica, titania, and zirconia mesoporous films synthesized by sol–gel template method", Journal of Sol-Gel Science and Technology, 50, 216-228.
  • Lei, Y., Chen, X., Hu, Z., Song, H., Cao, B., 2017a, "A general strategy for improving the thermal insulation performance of aerogels by multiple impregnation", Scripta Materialia, 139, 5-8.
  • Lei, Y., Hu, Z., Cao, B., Chen, X., Song, H., 2017b, "Enhancements of thermal insulation and mechanical property of silica aerogel monoliths by mixing graphene oxide", Materials Chemistry and Physics, 187, 183-190.
  • Li, T., Wang, T., 2008, "Preparation of silica aerogel from rice hull ash by drying at atmospheric pressure", Materials Chemistry and Physics, 112, 398-401.
  • Liu, H., Chu, P., Li, H., Zhang, H., Li, J., 2016, "Novel three-dimensional halloysite nanotubes/silica composite aerogels with enhanced mechanical strength and low thermal conductivity prepared at ambient pressure", Journal of Sol-Gel Science and Technology, 80, 651-659.
  • Liu, P., Gao, H., Chen, X., Chen, D., Lv, J., Han, M., et al., 2020, "In situ one-step construction of monolithic silica aerogel-based composite phase change materials for thermal protection", Composites Part B: Engineering, 195, 108072.
  • Maleki, H., Durães, L., García-González, C. A., del Gaudio, P., Portugal, A., Mahmoudi, M., 2016, "Synthesis and biomedical applications of aerogels: Possibilities and challenges", Advances in Colloid and Interface Science, 236, 1-27.
  • Mo, C. M., Li, Y. H., Liu, Y. S., Zhang, Y., Zhang, L. D., 1998, "Enhancement effect of photoluminescence in assemblies of nano-ZnO particles/silica aerogels", Journal of Applied Physics, 83, 4389-4391.
  • Nazeran, N., Moghaddas, J., 2017, "Synthesis and characterization of silica aerogel reinforced rigid polyurethane foam for thermal insulation application", Journal of Non-Crystalline Solids, 461, 1-11.
  • Nazriati, N., Setyawan, H., Affandi, S., Yuwana, M., Winardi, S., 2014, "Using bagasse ash as a silica source when preparing silica aerogels via ambient pressure drying", Journal of Non-Crystalline Solids, 400, 6-11.
  • Perego, C., Millini, R., 2013, "Porous materials in catalysis: challenges for mesoporous materials", Chemical Society Reviews, 42, 3956-76.
  • Pisal, A. A., Rao, A. V., 2016, "Comparative studies on the physical properties of TEOS, TMOS and Na2SiO3 based silica aerogels by ambient pressure drying method", Journal of Porous Materials, 23, 1547-1556.
  • Popovici, M., Gich, M., Roig, A., Casas, L., Molins, E., Savii, C., et al., 2004, "Ultraporous Single Phase Iron Oxide-Silica Nanostructured Aerogels from Ferrous Precursors", Langmuir, 20, 1425-1429.
  • Rezaei, S., Zolali, A. M., Jalali, A., Park, C. B., 2020, "Novel and simple design of nanostructured, super- insulative and flexible hybrid silica aerogel with a new macromolecular polyether-based precursor", Journal of Colloid and Interface Science, 561, 890-901.
  • Sachithanadam, M., Chandrakant Joshi, S., 2016, "Silica Aerogel Composites", Springer, Singapore, 15-17.
  • Shi, F., Liu, J.-X., Song, K., Wang, Z.-Y., 2010, "Cost-effective synthesis of silica aerogels from fly ash via ambient pressure drying", Journal of Non-Crystalline Solids, 356, 2241-2246.
  • Suchithra, P. S., Vazhayal, L., Peer Mohamed, A., Ananthakumar, S., 2012, "Mesoporous organic– inorganic hybrid aerogels through ultrasonic assisted sol–gel intercalation of silica–PEG in bentonite for effective removal of dyes, volatile organic pollutants and petroleum products from aqueous solution", Chemical Engineering Journal, 200-202, 589-600.
  • Talebi, Z., Soltani, P., Habibi, N., Latifi, F., 2019, "Silica aerogel/polyester blankets for efficient sound absorption in buildings", Construction and Building Materials, 220, 76-89.
  • Ubeyitogullari, A., Ciftci, O. N., 2016, "Formation of nanoporous aerogels from wheat starch", Carbohydrate Polymers, 147, 125-32.
  • Wu, W., Wang, K., Zhan, M.-S., 2012, "Preparation and Performance of Polyimide-Reinforced Clay Aerogel Composites", Industrial & Engineering Chemistry Research, 51, 12821-12826.
  • Zhang, J., Wang, J., Yang, C., Jia, H., Cui, X., Zhao, S., et al., 2017, "Mesoporous SiO2/VO2 double-layer thermochromic coating with improved visible transmittance for smart window", Solar Energy Materials and Solar Cells, 162, 134-141.
  • Zhao, J.-J., Duan, Y.-Y., Wang, X.-D., Zhang, X.-R., Han, Y.-H., Gao, Y.-B., et al., 2013, "Optical and radiative properties of infrared opacifier particles loaded in silica aerogels for high temperature thermal insulation", International Journal of Thermal Sciences, 70, 54-64.
  • Zhu, J., Xie, J., Lü, X., Jiang, D., 2009, "Synthesis and characterization of superhydrophobic silica and silica/titania aerogels by sol–gel method at ambient pressure", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 342, 97-101.
  • Zinzi, M., Rossi, G., Anderson, A. M., Carroll, M. K., Moretti, E., Buratti, C., 2019, "Optical and visual experimental characterization of a glazing system with monolithic silica aerogel", Solar Energy, 183, 30-39.
There are 53 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Gülcihan Güzel Kaya 0000-0003-2753-7724

Hüseyin Deveci 0000-0002-1103-7234

Publication Date September 1, 2021
Submission Date July 10, 2021
Acceptance Date August 13, 2021
Published in Issue Year 2021 Volume: 9 Issue: 3

Cite

IEEE G. Güzel Kaya and H. Deveci, “MORPHOLOGICAL, TEXTURAL AND THERMAL PROPERTIES OF LOW-COST SILICA AEROGEL COMPOSITES”, KONJES, vol. 9, no. 3, pp. 787–796, 2021, doi: 10.36306/konjes.969489.