Research Article
BibTex RIS Cite

PİRİNKAYALAR TÜNELİ (ERZURUM, TÜRKİYE) GİRİŞ VE ÇIKIŞ PORTALLARININ SAYISAL MODELLENMESİ: ÖRNEK VAKA ÇALIŞMASI

Year 2021, Volume: 9 Issue: 4, 1025 - 1039, 04.12.2021
https://doi.org/10.36306/konjes.859345

Abstract

Kaya kütlesi sınıflama sistemleri kaya kütlesinin mekanik davranışını karakterize etmek için kullanılmasının yanı sıra tünel kazısında kullanılacak tahkimat tasarımı için de öneriler sunmaktadır. Geçmişten günümüze birçok tünel projesinde kaya kütlesi sınıflama sistemlerindeki önerilerle tahkimat tasarımı yapılmıştır. Tünel deformasyonlarının sürekli olarak izlenmesi ve tahkimat durumunun tespiti, uygulayıcılar için zor ve maliyetli olabilmektedir. Pirinkayalar tüneli Doğu Karadeniz’i Doğu Anadolu’ya bağlayan Artvin-Erzurum karayolu üzerindeki tünellerden biri olup tahkimat tasarımında NATM (Yeni Avusturya Tünel Açma Yöntemi) ile önerilmiş tahkimat sistemi kullanılmıştır. Proje aşamasında planlanan tahkimat sistemi kazı sırasında bazı bölgelerde yine kaya kütlesi sınıflama sistemine bağlı olarak değiştirilmiştir. Tünellerde giriş ve çıkış portallarının kazısı ve tercih edilen tahkimat sisteminin analizi muhtemel sorunların önlenmesini sağlayacaktır. Bu çalışmada, Pirinkayalar tünelinin giriş ve çıkış portalları sonlu farklar yöntemine dayalı olarak analiz gerçekleştiren FLAC3D programı kullanılarak 3 boyutlu olarak modellenmiştir. Gerçekleştirilen bu örnek vaka çalışması ile, bir tünelde ampirik yöntemle tasarlanan tahkimat sisteminin durumu hakkında bilgi edinmek için yardımcı araç olarak kullanılan sayısal modelleme sonuçlarına değinilmiştir.

Thanks

Yazarlar Pirinkayalar tünel projesinde görev alan ve bu çalışmada emeği geçen herkese teşekkür eder.

References

  • Agan, C., 2016, “Prediction of squeezing potential of rock masses around the Suruc water tunnel”, Bull Eng Geol Environ, 75 (2), pp. 451-468.
  • Akgun, H., Muratli, S., Kockar, M. K., 2014, “Geotechnical investigations and preliminary support design for the Gecilmez tunnel: a case study along the Black Sea coastal highway, Giresun, northern Turkey”, Tunn Undergr Space Technol, 40, pp. 277-299.
  • Barton, N., Lien, R., Lunde, J., 1974, “Engineering classification of rock masses for the design of tunnel support”, Rock Mech, 6 (4), pp. 189-239.
  • Basarir, H., 2006, “Engineering geological studies and tunnel support design at Sulakyurt dam site, Turkey”, Eng Geol, 86, pp. 225-237.
  • Basarir, H., Genis, M., Ozarslan, A., 2010, “The analysis of radial displacements occurring near the face of a circular opening in weak rock mass”, Int J Rock Mech Min Sci, 47 (5), pp. 771-783.
  • Bi, J., Zhou, X. P., 2015, “Numerical simulation of zonal disintegration of the surrounding rock masses around a deep circular tunnel under dynamic unloading”, Int J Computational Methods, 12 (3), 1550020, pp. 1-23.
  • Bieniawski, Z. T., 1978, “Determining rock mass deformability: experience from case histories”, Int J Rock Mech Min Sci Geomech Abstr, 15, pp. 237-247.
  • Bieniawski, Z. T., 1989, Engineering rock mass classifications, Wiley, 251.
  • Brown, E.T., Hoek, E., 1978, “Trends in relationships between measured and in situ stresses and depth”, Int J Rock Mech Min Sci Geomech Abstr, 15 (4), pp. 211-215.
  • Carranza-Torres, C., Fairhurst, C., 2000, “Application of the convergence confinement method of tunnel design to rock masses that satisfy the Hoek–Brown failure criterion”, Tunn Undergr Space Technol, 15 (2), pp. 187-213.
  • Corbetta, F., Bernaud, D., Nguyen-Minh, D., 1991, “Contribution a la methode convergerce confinement par le principe de la similitude”, Rev Fr Geotech, 54, pp. 5-11 (in French).
  • Deney Raporları, 2019, Pirinkayalar tünel ve bağlantı inşaatı projesi deney roporları.
  • Genis, M., Basarir, H., Ozarslan, A., Bilir, E., Balaban, E., 2007, “Engineering geological appraisal of the rock masses and preliminary support design, Dorukhan Tunnel, Zonguldak, Turkey”, Eng Geol, 92, pp. 14-26.
  • Grimstad, E., Barton, N., 1993, “Updating the Q-system for NMT”, Proc Int Symp on Sprayed Concrete, Fagernes, Norway, Norwegian Concrete Association, Oslo, 20.
  • Gurocak, Z., 2011, “Analyses of stability and support design for a diversion tunnel at the Kapikaya dam site, Turkey”, Bull Eng Geol Environ, 70, pp. 41-52.
  • Gurocak, Z., Solanki, P., Zaman, M. M., 2007, “Empirical and numerical analyses of support requirements for a diversion tunnel at the Boztepe dam site, eastern Turkey”, Eng Geol, 91, (2–4), pp. 194-208.
  • Hoek, E., 2007, Practical rock engineering, ziyaret adresi: https://www.rocscience.com/, ziyaret tarihi: 12 Ocak 2017.
  • Hoek, E., Brown, E. T., 1997, “Practical estimates of rock mass strength”, Int J Rock Mech Min Sci, 34 (8), pp. 1165-1186.
  • Hoek, E., Carranza-Torres, C., Corkum, B., 2002, “Hoek–Brown failure criterion - 2002 Edition”. Proc of NARMSTAC 2002, Mining Innovation and Technology, University of Toronto Press, Toronto, pp. 267–273.
  • Itasca., 2005, Version 3.0 user manuals, Itasca Consulting Group, Inc. Mill Place, Minnesota.
  • Kanik, M., Gürocak, Z., 2018, “Importance of numerical analyses for determining support systems in tunneling: A comparative study from the Trabzon-Gumushane tunnel, Turkey”, J Afr Earth Sci, 143, pp. 253-265.
  • Kaya, A., Bulut, F., 2019, “Geotechnical studies and primary support design for a highway tunnel: a case study in Turkey”, Bull Eng Geol Env, 78, pp. 6311-6334.
  • Kaya, A., Sayın, A., 2019, “Engineering geological appraisal and preliminary support design for the Salarha Tunnel, Northeast Turkey”, Bull Eng Geol Env, 78, pp. 1095-1112.
  • KGM (Karayolları Genel Müdürlüğü), 2013, NATM Uygulamalı Yeraltı Tünel İşleri Teknik Şartnamesi, Karayolları Genel Müdürlüğü, Ankara.
  • Kontogianni, V. A., Stiros, S. C., 2002, “Predictions and observations of convergence in shallow tunnels: case histories in Greece”, Eng Geol, 63, pp. 333-345.
  • Kopar, İ., Çakır, Ç., 2013, “Tortum Gölü-Tortum Boğaz vadisi ve yakın çevresinin (Uzundere-Erzurum ve Yusufeli-Artvin) serrano ve ruiz-flaño yöntemiyle jeoçeşitlilik derecesinin belirlenmesi”, İstanbul Üniversitesi Edebiyat Fakültesi Coğrafya Bölümü Coğrafya Dergisi, 27, pp. 46-66.
  • Meguid, M. A., Rowe, R. K., Lo, K. Y., 2003, “Three-dimensional analysis of unlined tunnels in rock subjected to high horizontal stresses”, Canadian Geotechnical Journal, 40, pp. 1208-1224.
  • MTA GeoScience Map Viewer and Drawing Editor, 2019, General Directorate of Mineral Research and Exploration, ziyaret adresi: http://yerbilimleri.mta.gov.tr/, ziyaret tarihi: 16 Kasım 2019.
  • ÖNORM B 2203, 1994, Untertagebauarbeiten Werkvertrags-norm, Österreichischer Normen, Österreich. Özsan, A., Başarır, H., Yüceel, S., Cücen, Ö., 2009, “Engineering geological evaluation and preliminary support design for the metro extension tunnel, Ankara, Turkey”, Bull Eng Geol Env, 68, pp. 397-408.
  • Palmström, A., 1995, RMi-A rock mass characterization system for rock engineering purposes, PhD. Thesis, University of Oslo, Norway, 400.
  • Panet, M., 1995, Calcul des tunnels par la methode convergence-confinement, Press de I’ecole Natinale des Ponts et Chaussees.
  • PTP, 2019, Pirinkayalar tünel ve bağlantı inşaatı projesi.
  • Read, S. A. L., Richards, L. R., Perrin, N. D., 1999, “Applicability of the Hoek–Brown failure criterion to New Zealand greywacke rocks”, Proc 9th Int Soci for Rock Mech Congr, Paris, 2, pp. 655–660.
  • Sakcali, A., 2021, “Zayıf kaya kütlelerinde açılan modifiye at nalı kesitli tünellerdeki deformasyon dağılımının sayısal modelleme ile belirlenmesi”. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 21, pp. 934-944.
  • Sakcali, A., Yavuz, H., 2019 (a), “Estimation of radial deformations around circular tunnels in weak rock masses through numerical modelling”, Int J Rock Mech Min Sci, 123, 104092, pp. 1-14.
  • Sakcali, A., Yavuz, H., 2019 (b), “Zayıf kaya kütlesinde açılan dairesel kesitli bir tünelde radyal deformasyonların sayısal modelleme ile analizi”, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23 (1), pp. 66-73.
  • Sari, Y. D., Pasamehmetoglu, A. G., 2004, “Proposed support design, Kaletepe tunnel, Turkey”, Eng Geol, 3 (4), pp. 201-216.
  • Sari, Y. D., Pasamehmetoglu, A. G., Cetiner, E., Donmez, S., 2008, “Numerical analysis of a tunnel support design in conjunction with empirical methods”, Int J Geomech, 8 (1), pp. 74-81.
  • Sheorey, P. R., Mohan, G. M., Sinha, A., 2001, “Influence of elastic constants on the horizontal in situ stress”, Int J Rock Mech Min Sci, 38 (8), pp. 1211-1216.
  • Sopaci, E., Akgun, H., 2008, “Engineering geological investigations and the preliminary support design for the proposed Ordu peripheral highway tunnel, Ordu, Turkey”, Eng Geol, 96, pp. 43-61.
  • Unlu ,T., Gercek, H., 2003, “Effect of Poisson's ratio on the normalized radial displacements occurring around the face of a circular tunnel”, Tunn Undergr Space Technol, 18 (5), pp. 547-553.
  • Vlachopoulos, N., Diederichs, M. S., 2009, “Improved displacement profiles for convergence confinement analysis of deep tunnels”, Rock Mech Rock Eng, 42 (2), pp. 131-146.
  • Vlachopoulos, N., Diederichs, M. S., 2014, “Appropriate uses and practical limitations of 2D numerical analysis of tunnels and tunnel support response”, Geotech Geol Eng, 32, pp. 469-488.
  • Ya, S., Yonghua, S., Minghua, Z., Shaofeng, L., Xiang, L., 2018, “A case study of the failure of Liziping tunnel”, Tunn Undergr Space Technol, 80, pp. 301-312.
  • Yalcin, E., Gurocak, Z., Ghabchi, R., Zaman, M., 2015, “Numerical analysis for a realistic support design: case study of the Komurhan tunnel in Eastern Turkey”, Int J Geomech, 16 (3), 05015001e1-0501500, pp. 1-14.

Numerical Modelling of Entrance and Exit Portals in Pirinkayalar Tunnel (Erzurum, Turkey): A Case Study

Year 2021, Volume: 9 Issue: 4, 1025 - 1039, 04.12.2021
https://doi.org/10.36306/konjes.859345

Abstract

Rock mass classification systems are used to characterize the mechanical behavior of the rock mass, as well as suggestions for the support design to be used in tunnel excavation. In many tunnel projects from past to present, the support has been designed with the suggestions in the rock mass classification systems. Continuous monitoring of tunnel deformations and determination of support condition can be difficult and costly for practitioners. Pirinkayalar tunnel is one of the tunnels on the Artvin-Erzurum highway that connects Eastern Black Sea to Eastern Anatolia and the support system proposed with NATM (New Austrian Tunneling Method) was used. The support system planned at the project stage was changed again depending on the rock mass classification system during the excavation. Analysis of the excavation and preferred support system in the entrance and exit portals of tunnels prevent possible problems. In this study, the entrance and exit portals of the Pirinkayalar tunnel are modeled in 3D using the FLAC3D based on the finite difference method. With this case study, numerical modeling results, which are used as an auxiliary tool to obtain information about the state of the empirically designed support system in a tunnel, are mentioned.

References

  • Agan, C., 2016, “Prediction of squeezing potential of rock masses around the Suruc water tunnel”, Bull Eng Geol Environ, 75 (2), pp. 451-468.
  • Akgun, H., Muratli, S., Kockar, M. K., 2014, “Geotechnical investigations and preliminary support design for the Gecilmez tunnel: a case study along the Black Sea coastal highway, Giresun, northern Turkey”, Tunn Undergr Space Technol, 40, pp. 277-299.
  • Barton, N., Lien, R., Lunde, J., 1974, “Engineering classification of rock masses for the design of tunnel support”, Rock Mech, 6 (4), pp. 189-239.
  • Basarir, H., 2006, “Engineering geological studies and tunnel support design at Sulakyurt dam site, Turkey”, Eng Geol, 86, pp. 225-237.
  • Basarir, H., Genis, M., Ozarslan, A., 2010, “The analysis of radial displacements occurring near the face of a circular opening in weak rock mass”, Int J Rock Mech Min Sci, 47 (5), pp. 771-783.
  • Bi, J., Zhou, X. P., 2015, “Numerical simulation of zonal disintegration of the surrounding rock masses around a deep circular tunnel under dynamic unloading”, Int J Computational Methods, 12 (3), 1550020, pp. 1-23.
  • Bieniawski, Z. T., 1978, “Determining rock mass deformability: experience from case histories”, Int J Rock Mech Min Sci Geomech Abstr, 15, pp. 237-247.
  • Bieniawski, Z. T., 1989, Engineering rock mass classifications, Wiley, 251.
  • Brown, E.T., Hoek, E., 1978, “Trends in relationships between measured and in situ stresses and depth”, Int J Rock Mech Min Sci Geomech Abstr, 15 (4), pp. 211-215.
  • Carranza-Torres, C., Fairhurst, C., 2000, “Application of the convergence confinement method of tunnel design to rock masses that satisfy the Hoek–Brown failure criterion”, Tunn Undergr Space Technol, 15 (2), pp. 187-213.
  • Corbetta, F., Bernaud, D., Nguyen-Minh, D., 1991, “Contribution a la methode convergerce confinement par le principe de la similitude”, Rev Fr Geotech, 54, pp. 5-11 (in French).
  • Deney Raporları, 2019, Pirinkayalar tünel ve bağlantı inşaatı projesi deney roporları.
  • Genis, M., Basarir, H., Ozarslan, A., Bilir, E., Balaban, E., 2007, “Engineering geological appraisal of the rock masses and preliminary support design, Dorukhan Tunnel, Zonguldak, Turkey”, Eng Geol, 92, pp. 14-26.
  • Grimstad, E., Barton, N., 1993, “Updating the Q-system for NMT”, Proc Int Symp on Sprayed Concrete, Fagernes, Norway, Norwegian Concrete Association, Oslo, 20.
  • Gurocak, Z., 2011, “Analyses of stability and support design for a diversion tunnel at the Kapikaya dam site, Turkey”, Bull Eng Geol Environ, 70, pp. 41-52.
  • Gurocak, Z., Solanki, P., Zaman, M. M., 2007, “Empirical and numerical analyses of support requirements for a diversion tunnel at the Boztepe dam site, eastern Turkey”, Eng Geol, 91, (2–4), pp. 194-208.
  • Hoek, E., 2007, Practical rock engineering, ziyaret adresi: https://www.rocscience.com/, ziyaret tarihi: 12 Ocak 2017.
  • Hoek, E., Brown, E. T., 1997, “Practical estimates of rock mass strength”, Int J Rock Mech Min Sci, 34 (8), pp. 1165-1186.
  • Hoek, E., Carranza-Torres, C., Corkum, B., 2002, “Hoek–Brown failure criterion - 2002 Edition”. Proc of NARMSTAC 2002, Mining Innovation and Technology, University of Toronto Press, Toronto, pp. 267–273.
  • Itasca., 2005, Version 3.0 user manuals, Itasca Consulting Group, Inc. Mill Place, Minnesota.
  • Kanik, M., Gürocak, Z., 2018, “Importance of numerical analyses for determining support systems in tunneling: A comparative study from the Trabzon-Gumushane tunnel, Turkey”, J Afr Earth Sci, 143, pp. 253-265.
  • Kaya, A., Bulut, F., 2019, “Geotechnical studies and primary support design for a highway tunnel: a case study in Turkey”, Bull Eng Geol Env, 78, pp. 6311-6334.
  • Kaya, A., Sayın, A., 2019, “Engineering geological appraisal and preliminary support design for the Salarha Tunnel, Northeast Turkey”, Bull Eng Geol Env, 78, pp. 1095-1112.
  • KGM (Karayolları Genel Müdürlüğü), 2013, NATM Uygulamalı Yeraltı Tünel İşleri Teknik Şartnamesi, Karayolları Genel Müdürlüğü, Ankara.
  • Kontogianni, V. A., Stiros, S. C., 2002, “Predictions and observations of convergence in shallow tunnels: case histories in Greece”, Eng Geol, 63, pp. 333-345.
  • Kopar, İ., Çakır, Ç., 2013, “Tortum Gölü-Tortum Boğaz vadisi ve yakın çevresinin (Uzundere-Erzurum ve Yusufeli-Artvin) serrano ve ruiz-flaño yöntemiyle jeoçeşitlilik derecesinin belirlenmesi”, İstanbul Üniversitesi Edebiyat Fakültesi Coğrafya Bölümü Coğrafya Dergisi, 27, pp. 46-66.
  • Meguid, M. A., Rowe, R. K., Lo, K. Y., 2003, “Three-dimensional analysis of unlined tunnels in rock subjected to high horizontal stresses”, Canadian Geotechnical Journal, 40, pp. 1208-1224.
  • MTA GeoScience Map Viewer and Drawing Editor, 2019, General Directorate of Mineral Research and Exploration, ziyaret adresi: http://yerbilimleri.mta.gov.tr/, ziyaret tarihi: 16 Kasım 2019.
  • ÖNORM B 2203, 1994, Untertagebauarbeiten Werkvertrags-norm, Österreichischer Normen, Österreich. Özsan, A., Başarır, H., Yüceel, S., Cücen, Ö., 2009, “Engineering geological evaluation and preliminary support design for the metro extension tunnel, Ankara, Turkey”, Bull Eng Geol Env, 68, pp. 397-408.
  • Palmström, A., 1995, RMi-A rock mass characterization system for rock engineering purposes, PhD. Thesis, University of Oslo, Norway, 400.
  • Panet, M., 1995, Calcul des tunnels par la methode convergence-confinement, Press de I’ecole Natinale des Ponts et Chaussees.
  • PTP, 2019, Pirinkayalar tünel ve bağlantı inşaatı projesi.
  • Read, S. A. L., Richards, L. R., Perrin, N. D., 1999, “Applicability of the Hoek–Brown failure criterion to New Zealand greywacke rocks”, Proc 9th Int Soci for Rock Mech Congr, Paris, 2, pp. 655–660.
  • Sakcali, A., 2021, “Zayıf kaya kütlelerinde açılan modifiye at nalı kesitli tünellerdeki deformasyon dağılımının sayısal modelleme ile belirlenmesi”. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 21, pp. 934-944.
  • Sakcali, A., Yavuz, H., 2019 (a), “Estimation of radial deformations around circular tunnels in weak rock masses through numerical modelling”, Int J Rock Mech Min Sci, 123, 104092, pp. 1-14.
  • Sakcali, A., Yavuz, H., 2019 (b), “Zayıf kaya kütlesinde açılan dairesel kesitli bir tünelde radyal deformasyonların sayısal modelleme ile analizi”, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23 (1), pp. 66-73.
  • Sari, Y. D., Pasamehmetoglu, A. G., 2004, “Proposed support design, Kaletepe tunnel, Turkey”, Eng Geol, 3 (4), pp. 201-216.
  • Sari, Y. D., Pasamehmetoglu, A. G., Cetiner, E., Donmez, S., 2008, “Numerical analysis of a tunnel support design in conjunction with empirical methods”, Int J Geomech, 8 (1), pp. 74-81.
  • Sheorey, P. R., Mohan, G. M., Sinha, A., 2001, “Influence of elastic constants on the horizontal in situ stress”, Int J Rock Mech Min Sci, 38 (8), pp. 1211-1216.
  • Sopaci, E., Akgun, H., 2008, “Engineering geological investigations and the preliminary support design for the proposed Ordu peripheral highway tunnel, Ordu, Turkey”, Eng Geol, 96, pp. 43-61.
  • Unlu ,T., Gercek, H., 2003, “Effect of Poisson's ratio on the normalized radial displacements occurring around the face of a circular tunnel”, Tunn Undergr Space Technol, 18 (5), pp. 547-553.
  • Vlachopoulos, N., Diederichs, M. S., 2009, “Improved displacement profiles for convergence confinement analysis of deep tunnels”, Rock Mech Rock Eng, 42 (2), pp. 131-146.
  • Vlachopoulos, N., Diederichs, M. S., 2014, “Appropriate uses and practical limitations of 2D numerical analysis of tunnels and tunnel support response”, Geotech Geol Eng, 32, pp. 469-488.
  • Ya, S., Yonghua, S., Minghua, Z., Shaofeng, L., Xiang, L., 2018, “A case study of the failure of Liziping tunnel”, Tunn Undergr Space Technol, 80, pp. 301-312.
  • Yalcin, E., Gurocak, Z., Ghabchi, R., Zaman, M., 2015, “Numerical analysis for a realistic support design: case study of the Komurhan tunnel in Eastern Turkey”, Int J Geomech, 16 (3), 05015001e1-0501500, pp. 1-14.
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Alaattin Sakcalı 0000-0001-9246-917X

Publication Date December 4, 2021
Submission Date January 12, 2021
Acceptance Date October 31, 2021
Published in Issue Year 2021 Volume: 9 Issue: 4

Cite

IEEE A. Sakcalı, “PİRİNKAYALAR TÜNELİ (ERZURUM, TÜRKİYE) GİRİŞ VE ÇIKIŞ PORTALLARININ SAYISAL MODELLENMESİ: ÖRNEK VAKA ÇALIŞMASI”, KONJES, vol. 9, no. 4, pp. 1025–1039, 2021, doi: 10.36306/konjes.859345.