Araştırma Makalesi
BibTex RIS Kaynak Göster

PECVD YÖNTEMİ İLE TOHUMLARIN HİDROFOBİK İNCE FİLMLE ENKAPSÜLASYONU

Yıl 2021, Cilt: 9 , 1 - 9, 30.12.2021
https://doi.org/10.36306/konjes.969486

Öz

Sürdürülebilir tarım için tohumların modifikasyonu ile ilgili çalışmalara duyulan ilgi her geçen gün artmaktadır. Geleneksel tohum modifikasyonlarının birçoğunda, tohumlar kimyasallarla doğrudan muamele edilmektedir. Bu yöntemlerde kullanılan kimyasallar, çevre ve insan sağlığı için tehdit oluşturabilmektedir. Alternatif olarak, tohum modifikasyonunda çevre dostu gaz fazı yöntemler de yaygın bir şekilde kullanılmaya başlamıştır. Bu çalışmada, mercimek tohumlarının yüzeyleri düşük yüzey enerjili ince film ile gaz fazında kaplanarak, tohumların çimlenmesini geciktirmek amaçlanmıştır. Bu amaçla, plazma destekli kimyasal buhar biriktirme (PECVD) yöntemi kullanılarak mercimek tohumları tek adımda poli(heksametildisiloksan) (PHMDSO) ince filmi ile enkapsüle edilmiştir. Plazma gücünün, PHMDSO ince filminin kaplama hızı üzerine etkileri incelenmiştir. En yüksek kaplama hızı 70 W plazma gücünde 27,1 nm/dk olarak bulunmuştur. Tohum çimlendirme deney sonuçlarına göre, ince film kaplaması tohumların çimlenmesini büyük ölçüde engellemiştir.

Destekleyen Kurum

Konya Teknik Üniversitesi BAP koordinatörlüğü

Proje Numarası

202016058

Teşekkür

Bu çalışma, Konya Teknik Üniversitesi BAP koordinatörlüğü tarafından 202016058 nolu proje ile desteklenmiştir.

Kaynakça

  • Çıtak, E., İstanbullu, B., Şakalak, H., Gürsoy, M., Karaman, M., 2019, “All‐Dry Hydrophobic Functionalization of Paper Surfaces for Efficient Transfer of CVD Graphene”, Macromolecular Chemistry and Physics, Vol. 220, Nr. 22, pp. 1900277.
  • d’Agostino, R., Cramarossa, F., Fracassi, F., Illuzzi, F., 1990, “Plasma polymerization of fluorocarbons”, Plasma Deposition, Treatment, and Etching of Polymers, Volume 2, Editor: d’Agostino, R., Academic Press, New York, USA, 95-162.
  • de Groot, G.J., Hundt, A., Murphy, A.B., Bange, M.P., Mai-Prochnow, A., 2018, “Cold plasma treatment for cotton seed germination improvement”, Scientific reports, Vol. 8, Nr. 1, pp. 1-10.
  • Dhillon, P.K., Brown, P.S., Bain, C.D., Badyal, J.P.S., Sarkar, S., 2014, “Topographical length scales of hierarchical superhydrophobic surfaces”, Applied surface science, Vol. 317, pp. 1068-1074.
  • Gao, X., Zhang, A., Héroux, P., Sand, W., Sun, Z., Zhan, J., Wang, C., Hao, S., Li, Z., Li, Z. and Guo, Y., 2019, “Effect of dielectric barrier discharge cold plasma on pea seed growth”, Journal of agricultural and food chemistry, Vol. 67, Nr. 39, pp.10813-10822.
  • Gómez-Ramírez, A., López-Santos, C., Cantos, M., García, J.L., Molina, R., Cotrino, J., Espinós, J.P., González-Elipe, A.R., 2017, “Surface chemistry and germination improvement of Quinoa seeds subjected to plasma activation”, Scientific reports, Vol. 7, Nr. 1, pp. 1-12.
  • Govindaraj, M., Masilamani, P., Albert, V.A., Bhaskaran, M., 2017, “Effect of physical seed treatment on yield and quality of crops: A review”, Agricultural Reviews, Vol. 38, Nr. 1, pp. 1-14.
  • Grandjean, P., Andersen, E. W., Budtz-Jørgensen, E., Nielsen, F., Mølbak, K., Weihe, P., Heilmann, C., 2012, “Serum vaccine antibody concentrations in children exposed to perfluorinated compounds”, Jama, Vol. 307, Nr. 4, pp. 391-397.
  • Gürsoy, M., 2020a, “All-dry patterning method to fabricate hydrophilic/hydrophobic surface for fog harvesting”, Colloid and Polymer Science, Vol. 298, Nr. 8, pp. 969-976.
  • Gürsoy, M., 2020b, “Fabrication of Poly (N-isopropylacrylamide) with Higher Deposition Rate and Easier Phase Transition by Initiated Plasma Enhanced Chemical Vapor Deposition”, Plasma Chemistry and Plasma Processing, Vol. 40, pp. 1063-1079.
  • Gürsoy, M., 2021a, “Vapor deposition polymerization of synthetic rubber thin film in a plasma enhanced chemical vapor deposition reactor”, Journal of Applied Polymer Science, Vol. 138, Nr. 4, pp. 49722.
  • Gürsoy, M., 2021b, “Fabrication of Paper-Based Microfluidic Devices Using PECVD for Selective Separation”, Macromolecular Research, Vol. 29, pp. 423–429.
  • Gürsoy, M., Karaman, M., 2016, “Hydrophobic coating of expanded perlite particles by plasma polymerization”, Chemical Engineering Journal, Vol. 284, pp. 343-350.
  • Gürsoy, M., Karaman, M., 2018, “Improvement of wetting properties of expanded perlite particles by an organic conformal coating”, Progress in Organic Coatings, Vol. 120, pp. 190-197.
  • Karaman, M., Gürsoy, M., Aykul, F., Tosun, Z., Kars, M.D., Yildiz, H.B., 2017a, “Hydrophobic coating of surfaces by plasma polymerization in an RF plasma reactor with an outer planar electrode: synthesis, characterization and biocompatibility”, Plasma Science and Technology, Vol. 19, Nr. 8, pp. 085503.
  • Karaman, M., Gürsoy, M., Kus, M., Özel, F., Yenel, E., Sahin, Ö. G., Kivrak, H. D., 2017b, “Chemical and physical modification of surfaces”, Surface treatments for biological, chemical and physical applications, Volume 2, Editor: Gürsoy, M., Karaman, M., John Wiley & Sons, Weinheim, Germany, 23-66.
  • Khamsen, N., Onwimol, D., Teerakawanich, N., Dechanupaprittha, S., Kanokbannakorn, W., Hongesombut, K., Srisonphan, S., 2016, “Rice (Oryza sativa L.) seed sterilization and germination enhancement via atmospheric hybrid nonthermal discharge plasma”, ACS applied materials & interfaces, Vol. 8, Nr. 30, pp. 19268-19275.
  • Lerouge, S., Wertheimer, M.R., Yahia L.H, 2001, “Plasma sterilization: a review of parameters, mechanisms, and limitations”, Plasmas and Polymers, Vol. 6, Nr. 3, pp. 175-188.
  • Ling, L., Jiafeng, J., Jiangang, L., Minchong, S., Xin, H., Hanliang, S., Yuanhua, D., 2014, “Effects of cold plasma treatment on seed germination and seedling growth of soybean”, Scientific reports, Vol. 4, Nr. 1, pp. 1-7.
  • Ling, L, Jiangang, L, Minchong, S., Jinfeng, H., Hanliang, S., Yuanhua, D., Jiafeng, J., 2016, “Improving seed germination and peanut yields by cold plasma treatment”, Plasma Science and Technology, Vol.18, Nr. 10, pp. 1027.
  • Mazandarani, A., Goudarzi, S., Ghafoorifard, H., Eskandari, A., 2020, “Evaluation of DBD Plasma Effects on Barley Seed Germination and Seedling Growth”, IEEE Transactions on Plasma Science, Vol. 48, Nr. 9, pp. 3115-3121.
  • Mitra, A., Li, Y.F., Klämpfl, T.G., Shimizu, T., Jeon, J., Morfill, G.E., Zimmermann, J.L., 2014, “Inactivation of surface-borne microorganisms and increased germination of seed specimen by cold atmospheric plasma”, Food and Bioprocess Technology, Vol. 7, Nr. 3, pp. 645-653.
  • Mondal, S., Pal, S., Maity, J., 2018, “Hydrophobic thin fluoropolymer coating on cotton surfaces”, International Journal of Polymer Analysis and Characterization, Vol. 23, Nr. 4, pp. 376-382.
  • Ng, Z.C., Roslan, R.A., Lau, W.J., Gürsoy, M., Karaman, M., Jullok, N., Ismail, A.F., 2020, “A green approach to modify surface properties of polyurethane foam for enhanced oil absorption”, Polymers, Vol. 12, Nr. 9, pp. 1883.
  • Olsen, G.W., Chang, S.C., Noker, P.E., Gorman, G.S., Ehresman, D.J., Lieder, P.H., Butenhoff, J.L. 2009, “A comparison of the pharmacokinetics of perfluorobutanesulfonate (PFBS) in rats, monkeys, and humans”, Toxicology, Vol. 256, Nr. 1-2, pp. 65-74.
  • Puligundla, P., Kim, J.W., Mok, C., 2017, “Effects of nonthermal plasma treatment on decontamination and sprouting of radish (Raphanus sativus L.) seeds”, Food and Bioprocess Technology, Vol. 10, Nr. 6, pp. 1093-1102.
  • Randeniya, L.K., de Groot, G.J., 2015, “Non‐thermal plasma treatment of agricultural seeds for stimulation of germination, removal of surface contamination and other benefits: A review”, Plasma Processes and Polymers, Vol. 12, Nr. 7, pp. 608-623.
  • Sadhu, S., Thirumdas, R., Deshmukh, R.R., Annapure, U.S., 2017, “Influence of cold plasma on the enzymatic activity in germinating mung beans (Vigna radiate)”, LWT, Vol. 78, pp. 97-104.
  • Safonov, A.I., Sulyaeva, V.S., Bogoslovtseva, A.L., Timoshenko, N.I., 2018, “Influence of Precursor Gas Flow Rate on Fluoropolymer Coating Growth Rate During Hot Wire Chemical Vapor Deposition”, Journal of Applied Mechanics and Technical Physics, Vol. 59, Nr. 5, pp. 842-846.
  • Sarapirom, S., Yu, L.D., 2021, “Low-pressure and atmospheric plasma treatments of sunflower seeds”, Surface and Coatings Technology, Vol. 406, pp. 126638.
  • Singh, H., Jassal, R.K., Kang, J.S., Sandhu, S.S., Kang, H., Grewal, K., 2015, “Seed priming techniques in field crops-A review”, Agricultural Reviews, Vol. 36, Nr. 4, pp. 251-264.
  • Şakalak, H., Yılmaz, K., Gürsoy, M., Karaman, M., 2020, “Roll-to roll initiated chemical vapor deposition of super hydrophobic thin films on large-scale flexible substrates”, Chemical Engineering Science, Vol. 215, pp. 115466.
  • Şimşek, B., Karaman, M., 2020, “Initiated chemical vapor deposition of poly (hexafluorobutyl acrylate) thin films for superhydrophobic surface modification of nanostructured textile surfaces”, Journal of Coatings Technology and Research, Vol. 17, Nr. 2, pp. 381-391.
  • Tripathy, A., Kumar, A., Sreedharan, S., Muralidharan, G., Pramanik, A., Nandi, D., Sen, P., 2018, “Fabrication of low-cost flexible superhydrophobic antibacterial surface with dual-scale roughness”, ACS Biomaterials Science & Engineering, Vol. 4, Nr. 6, pp. 2213-2223.
  • Woodward, I., Schofield, W.C.E., Roucoules, V., Badyal, J.P.S., 2003, “Super-hydrophobic surfaces produced by plasma fluorination of polybutadiene films”, Langmuir, Vol. 19, Nr. 8, pp. 3432-3438.
  • Yasuda, H., Wang, C.R., 1985, “Plasma polymerization investigated by the substrate temperature dependence”, Journal of Polymer Science: Polymer Chemistry Edition, Vol. 23, Nr. 1, pp. 87-106.
  • Zahoranová A., Hoppanová L., Šimončicová J., Tučeková Z., Medvecká V., Hudecová D., Kaliňáková B., Kováčik D., Černák M., 2018, “Effect of cold atmospheric pressure plasma on maize seeds: enhancement of seedlings growth and surface microorganisms inactivation”, Plasma Chemistry and Plasma Processing, Vol. 38, Nr. 5, pp. 969-88.

Hydrophobic Thin Film Encapsulation of Seeds Using PECVD Method

Yıl 2021, Cilt: 9 , 1 - 9, 30.12.2021
https://doi.org/10.36306/konjes.969486

Öz

The interest in studies on the modification of seeds for sustainable agriculture is increasing day by day. In many of the traditional seed modifications, the seeds are directly treated with chemicals. The chemicals used in these methods can pose a threat to the environment and human health. Alternatively, environmentally friendly gas phase methods have also started to be widely used in seed modification. In this study, it was aimed to delay the germination of lentil seeds by coating the surfaces of lentil seeds with low surface energy thin film in the gas phase. For this purpose, lentil seeds were encapsulated with poly(hexamethyldisiloxane) (PHMDSO) thin film using single-step plasma enhanced chemical vapor deposition (PECVD) method. The effects of plasma power on the deposition rate of PHMDSO thin film were investigated. The highest deposition rate was found to be 27.1 nm/min at 70 W plasma power. According to the seed germination test results, thin film coating greatly inhibited the germination of seeds.

Proje Numarası

202016058

Kaynakça

  • Çıtak, E., İstanbullu, B., Şakalak, H., Gürsoy, M., Karaman, M., 2019, “All‐Dry Hydrophobic Functionalization of Paper Surfaces for Efficient Transfer of CVD Graphene”, Macromolecular Chemistry and Physics, Vol. 220, Nr. 22, pp. 1900277.
  • d’Agostino, R., Cramarossa, F., Fracassi, F., Illuzzi, F., 1990, “Plasma polymerization of fluorocarbons”, Plasma Deposition, Treatment, and Etching of Polymers, Volume 2, Editor: d’Agostino, R., Academic Press, New York, USA, 95-162.
  • de Groot, G.J., Hundt, A., Murphy, A.B., Bange, M.P., Mai-Prochnow, A., 2018, “Cold plasma treatment for cotton seed germination improvement”, Scientific reports, Vol. 8, Nr. 1, pp. 1-10.
  • Dhillon, P.K., Brown, P.S., Bain, C.D., Badyal, J.P.S., Sarkar, S., 2014, “Topographical length scales of hierarchical superhydrophobic surfaces”, Applied surface science, Vol. 317, pp. 1068-1074.
  • Gao, X., Zhang, A., Héroux, P., Sand, W., Sun, Z., Zhan, J., Wang, C., Hao, S., Li, Z., Li, Z. and Guo, Y., 2019, “Effect of dielectric barrier discharge cold plasma on pea seed growth”, Journal of agricultural and food chemistry, Vol. 67, Nr. 39, pp.10813-10822.
  • Gómez-Ramírez, A., López-Santos, C., Cantos, M., García, J.L., Molina, R., Cotrino, J., Espinós, J.P., González-Elipe, A.R., 2017, “Surface chemistry and germination improvement of Quinoa seeds subjected to plasma activation”, Scientific reports, Vol. 7, Nr. 1, pp. 1-12.
  • Govindaraj, M., Masilamani, P., Albert, V.A., Bhaskaran, M., 2017, “Effect of physical seed treatment on yield and quality of crops: A review”, Agricultural Reviews, Vol. 38, Nr. 1, pp. 1-14.
  • Grandjean, P., Andersen, E. W., Budtz-Jørgensen, E., Nielsen, F., Mølbak, K., Weihe, P., Heilmann, C., 2012, “Serum vaccine antibody concentrations in children exposed to perfluorinated compounds”, Jama, Vol. 307, Nr. 4, pp. 391-397.
  • Gürsoy, M., 2020a, “All-dry patterning method to fabricate hydrophilic/hydrophobic surface for fog harvesting”, Colloid and Polymer Science, Vol. 298, Nr. 8, pp. 969-976.
  • Gürsoy, M., 2020b, “Fabrication of Poly (N-isopropylacrylamide) with Higher Deposition Rate and Easier Phase Transition by Initiated Plasma Enhanced Chemical Vapor Deposition”, Plasma Chemistry and Plasma Processing, Vol. 40, pp. 1063-1079.
  • Gürsoy, M., 2021a, “Vapor deposition polymerization of synthetic rubber thin film in a plasma enhanced chemical vapor deposition reactor”, Journal of Applied Polymer Science, Vol. 138, Nr. 4, pp. 49722.
  • Gürsoy, M., 2021b, “Fabrication of Paper-Based Microfluidic Devices Using PECVD for Selective Separation”, Macromolecular Research, Vol. 29, pp. 423–429.
  • Gürsoy, M., Karaman, M., 2016, “Hydrophobic coating of expanded perlite particles by plasma polymerization”, Chemical Engineering Journal, Vol. 284, pp. 343-350.
  • Gürsoy, M., Karaman, M., 2018, “Improvement of wetting properties of expanded perlite particles by an organic conformal coating”, Progress in Organic Coatings, Vol. 120, pp. 190-197.
  • Karaman, M., Gürsoy, M., Aykul, F., Tosun, Z., Kars, M.D., Yildiz, H.B., 2017a, “Hydrophobic coating of surfaces by plasma polymerization in an RF plasma reactor with an outer planar electrode: synthesis, characterization and biocompatibility”, Plasma Science and Technology, Vol. 19, Nr. 8, pp. 085503.
  • Karaman, M., Gürsoy, M., Kus, M., Özel, F., Yenel, E., Sahin, Ö. G., Kivrak, H. D., 2017b, “Chemical and physical modification of surfaces”, Surface treatments for biological, chemical and physical applications, Volume 2, Editor: Gürsoy, M., Karaman, M., John Wiley & Sons, Weinheim, Germany, 23-66.
  • Khamsen, N., Onwimol, D., Teerakawanich, N., Dechanupaprittha, S., Kanokbannakorn, W., Hongesombut, K., Srisonphan, S., 2016, “Rice (Oryza sativa L.) seed sterilization and germination enhancement via atmospheric hybrid nonthermal discharge plasma”, ACS applied materials & interfaces, Vol. 8, Nr. 30, pp. 19268-19275.
  • Lerouge, S., Wertheimer, M.R., Yahia L.H, 2001, “Plasma sterilization: a review of parameters, mechanisms, and limitations”, Plasmas and Polymers, Vol. 6, Nr. 3, pp. 175-188.
  • Ling, L., Jiafeng, J., Jiangang, L., Minchong, S., Xin, H., Hanliang, S., Yuanhua, D., 2014, “Effects of cold plasma treatment on seed germination and seedling growth of soybean”, Scientific reports, Vol. 4, Nr. 1, pp. 1-7.
  • Ling, L, Jiangang, L, Minchong, S., Jinfeng, H., Hanliang, S., Yuanhua, D., Jiafeng, J., 2016, “Improving seed germination and peanut yields by cold plasma treatment”, Plasma Science and Technology, Vol.18, Nr. 10, pp. 1027.
  • Mazandarani, A., Goudarzi, S., Ghafoorifard, H., Eskandari, A., 2020, “Evaluation of DBD Plasma Effects on Barley Seed Germination and Seedling Growth”, IEEE Transactions on Plasma Science, Vol. 48, Nr. 9, pp. 3115-3121.
  • Mitra, A., Li, Y.F., Klämpfl, T.G., Shimizu, T., Jeon, J., Morfill, G.E., Zimmermann, J.L., 2014, “Inactivation of surface-borne microorganisms and increased germination of seed specimen by cold atmospheric plasma”, Food and Bioprocess Technology, Vol. 7, Nr. 3, pp. 645-653.
  • Mondal, S., Pal, S., Maity, J., 2018, “Hydrophobic thin fluoropolymer coating on cotton surfaces”, International Journal of Polymer Analysis and Characterization, Vol. 23, Nr. 4, pp. 376-382.
  • Ng, Z.C., Roslan, R.A., Lau, W.J., Gürsoy, M., Karaman, M., Jullok, N., Ismail, A.F., 2020, “A green approach to modify surface properties of polyurethane foam for enhanced oil absorption”, Polymers, Vol. 12, Nr. 9, pp. 1883.
  • Olsen, G.W., Chang, S.C., Noker, P.E., Gorman, G.S., Ehresman, D.J., Lieder, P.H., Butenhoff, J.L. 2009, “A comparison of the pharmacokinetics of perfluorobutanesulfonate (PFBS) in rats, monkeys, and humans”, Toxicology, Vol. 256, Nr. 1-2, pp. 65-74.
  • Puligundla, P., Kim, J.W., Mok, C., 2017, “Effects of nonthermal plasma treatment on decontamination and sprouting of radish (Raphanus sativus L.) seeds”, Food and Bioprocess Technology, Vol. 10, Nr. 6, pp. 1093-1102.
  • Randeniya, L.K., de Groot, G.J., 2015, “Non‐thermal plasma treatment of agricultural seeds for stimulation of germination, removal of surface contamination and other benefits: A review”, Plasma Processes and Polymers, Vol. 12, Nr. 7, pp. 608-623.
  • Sadhu, S., Thirumdas, R., Deshmukh, R.R., Annapure, U.S., 2017, “Influence of cold plasma on the enzymatic activity in germinating mung beans (Vigna radiate)”, LWT, Vol. 78, pp. 97-104.
  • Safonov, A.I., Sulyaeva, V.S., Bogoslovtseva, A.L., Timoshenko, N.I., 2018, “Influence of Precursor Gas Flow Rate on Fluoropolymer Coating Growth Rate During Hot Wire Chemical Vapor Deposition”, Journal of Applied Mechanics and Technical Physics, Vol. 59, Nr. 5, pp. 842-846.
  • Sarapirom, S., Yu, L.D., 2021, “Low-pressure and atmospheric plasma treatments of sunflower seeds”, Surface and Coatings Technology, Vol. 406, pp. 126638.
  • Singh, H., Jassal, R.K., Kang, J.S., Sandhu, S.S., Kang, H., Grewal, K., 2015, “Seed priming techniques in field crops-A review”, Agricultural Reviews, Vol. 36, Nr. 4, pp. 251-264.
  • Şakalak, H., Yılmaz, K., Gürsoy, M., Karaman, M., 2020, “Roll-to roll initiated chemical vapor deposition of super hydrophobic thin films on large-scale flexible substrates”, Chemical Engineering Science, Vol. 215, pp. 115466.
  • Şimşek, B., Karaman, M., 2020, “Initiated chemical vapor deposition of poly (hexafluorobutyl acrylate) thin films for superhydrophobic surface modification of nanostructured textile surfaces”, Journal of Coatings Technology and Research, Vol. 17, Nr. 2, pp. 381-391.
  • Tripathy, A., Kumar, A., Sreedharan, S., Muralidharan, G., Pramanik, A., Nandi, D., Sen, P., 2018, “Fabrication of low-cost flexible superhydrophobic antibacterial surface with dual-scale roughness”, ACS Biomaterials Science & Engineering, Vol. 4, Nr. 6, pp. 2213-2223.
  • Woodward, I., Schofield, W.C.E., Roucoules, V., Badyal, J.P.S., 2003, “Super-hydrophobic surfaces produced by plasma fluorination of polybutadiene films”, Langmuir, Vol. 19, Nr. 8, pp. 3432-3438.
  • Yasuda, H., Wang, C.R., 1985, “Plasma polymerization investigated by the substrate temperature dependence”, Journal of Polymer Science: Polymer Chemistry Edition, Vol. 23, Nr. 1, pp. 87-106.
  • Zahoranová A., Hoppanová L., Šimončicová J., Tučeková Z., Medvecká V., Hudecová D., Kaliňáková B., Kováčik D., Černák M., 2018, “Effect of cold atmospheric pressure plasma on maize seeds: enhancement of seedlings growth and surface microorganisms inactivation”, Plasma Chemistry and Plasma Processing, Vol. 38, Nr. 5, pp. 969-88.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Mehmet Gürsoy 0000-0003-2275-9096

Proje Numarası 202016058
Yayımlanma Tarihi 30 Aralık 2021
Gönderilme Tarihi 13 Temmuz 2021
Kabul Tarihi 31 Ekim 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 9

Kaynak Göster

IEEE M. Gürsoy, “PECVD YÖNTEMİ İLE TOHUMLARIN HİDROFOBİK İNCE FİLMLE ENKAPSÜLASYONU”, KONJES, c. 9, ss. 1–9, 2021, doi: 10.36306/konjes.969486.