Reaction Network Reduction with Mixed-Integer Nonlinear Programming
Year 2021,
Volume: 9 , 142 - 156, 30.12.2021
Emrullah Ertürk
,
Erdal Aydın
,
Hasan Şıldır
Abstract
In this study, a Mixed-Integer Nonlinear programming (MINLP) problem is formulated for reaction network model reduction. The MINLP problem introduces binary variables for the existence of rate constants in addition to traditional continuous variables to minimize the prediction error. Such binary variables are implemented through linking constraints. Both the impact of initial conditions and operating conditions are investigated on the model reduction. Commercial and free solver comparisons are also provided in terms of computational time and results. The methodology is implemented on an experimentally-derived reaction pathway from the literature. A significant network reduction is achieved under different operating temperatures and initial conditions. The reduced model provides a satisfactory prediction accuracy with significantly low number of reactions and parameters.
References
- Bonami, P., Belotti, P., Forrest, J. J., Ladanyi, L., Laird, C., Lee, J., Waechter, A., "Basic Open-source Nonlinear Mixed INteger programming", https://www.coin-or.org/Bonmin/, ziyaret tarihi: 15 Mayıs 2021.
- Craciun, G., Pantea, C. 2008, "Identifiability of chemical reaction networks". Journal of Mathematical Chemistry, 44(1), 244–259.
- Duran, M. A., Grossmann, I. E., 1986, "An outer-approximation algorithm for a class of mixed-integer nonlinear programs". Mathematical Programming, 36(3), 307–339.
- Edgar, T. F., Himmelblau, D. M., Lasdon, L. S., 2001, "Optimization of Chemical Processes", McGraw-Hill, New York, ABD.
- Floudas, C. A., 1995, "Nonlinear and Mixed-Integer Optimization", Oxford University Press, New York, ABD
Fogler, H. S., 2016, "Elements of Chemical Reaction Engineering", Prentice Hall, Boston.
- Gábor, A., Banga, J. R., 2015, "Robust and efficient parameter estimation in dynamic models of biological systems", BMC Systems Biology, 9(1), 74.
- Grossmann, I. E., Viswanathan, J., Vecchietti, A., Raman, R., Kalvelagen, E., "DICOPT", https://www.gams.com/latest/docs/S_DICOPT.html, ziyaret tarihi: 15 Mayıs 2021.
- Hannemann-Tamás, R., Gábor, A., Szederkényi, G., Hangos, K. M., 2013, "Model complexity reduction of chemical reaction networks using mixed-integer quadratic programming". Computers & Mathematics with Applications, 65(10), 1575–1595.
- Hart, W. E., Laird, C., Watson, J.-P., Woodruff, D. L., 2012, "Pyomo – Optimization Modeling in Python", Advances in Modeling Agricultural Systems, Springer, Boston, US.
- Krantz, W. B., 2007, "Scaling Analysis in Modeling Transport and Reaction Processes", John Wiley & Sons Inc, Hoboken, NJ, USA.
- Land, A. H., Doig, A. G., 1960, "An Automatic Method of Solving Discrete Programming Problems", Econometrica, 28(3), 497.
- Lee, J. H., Shin, J., Realff, M. J., 2018, "Machine learning: Overview of the recent progresses and implications for the process systems engineering field", Computers and Chemical Engineering, 114, 111–121.
- Okino, M. S., Mavrovouniotis, M. L., 1998, "Simplification of Mathematical Models of Chemical Reaction Systems". Chemical Reviews, 98(2), 391–408.
- Snowden, T. J., van der Graaf, P. H., Tindall, M. J., 2017, "Methods of Model Reduction for Large Scale Biological Systems: A Survey of Current Methods and Trends", Bulletin of Mathematical Biology, 79(7), 1449–1486.
- Tang, J., Zhu, L., Fu, X., Dai, J., Guo, X., Hu, C., 2017, "Insights into the Kinetics and Reaction Network of Aluminum Chloride-Catalyzed Conversion of Glucose in NaCl–H2O/THF Biphasic System", ACS Catalysis, 7(1), 256–266.
- Zander, H.-J., Dittmeyer, R., Wagenhuber, J., 1999, "Dynamic Modeling of Chemical Reaction Systems with Neural Networks and Hybrid Models", Chemical Engineering & Technology, 22(7), 571–574.
TAM SAYILI VE SÜREKLİ OPTİMİZASYON PROBLEMİ İLE REAKSİYON AĞ MODELLERİNİN KÜÇÜLTÜLMESİ
Year 2021,
Volume: 9 , 142 - 156, 30.12.2021
Emrullah Ertürk
,
Erdal Aydın
,
Hasan Şıldır
Abstract
Bu çalışmada, reaksiyon ağı küçültmesi için tam sayılı ve kesikli bir optimizasyon (MINLP) problemi formüle edilmiştir. Bu problem, tahmin hatasını enküçüklemek için geleneksel sürekli değişkenlere ek olarak reaksiyon hız sabitlerinin mevcudiyeti için iki değerli değişkenler tanımlamaktadır. Bu iki değerli değişkenler bağlantı kısıtı ile uygulanmaktadır. Başlangıç koşulları ve çalışma koşullarının model küçültmeye olan etkisi araştırılmıştır. Bu bağlamda, ticari ve ücretsiz çözücü programların hesaplama süreleri ve sonuçları karşılaştırmalı olarak sunulmuştur. Önerilen yöntem literatürde bulunan deneysel olarak türetilmiş reaksiyon ağına uygulanmıştır. Farklı sıcaklık ve başlangıç konsantrasyonlarında kayda değer ağ küçültülmesi sağlanmıştır. Küçültülmüş model önemli ölçüde az reaksiyon ve parametre sayısı ile tatmin edici kestirim doğruluğu sunmaktadır.
References
- Bonami, P., Belotti, P., Forrest, J. J., Ladanyi, L., Laird, C., Lee, J., Waechter, A., "Basic Open-source Nonlinear Mixed INteger programming", https://www.coin-or.org/Bonmin/, ziyaret tarihi: 15 Mayıs 2021.
- Craciun, G., Pantea, C. 2008, "Identifiability of chemical reaction networks". Journal of Mathematical Chemistry, 44(1), 244–259.
- Duran, M. A., Grossmann, I. E., 1986, "An outer-approximation algorithm for a class of mixed-integer nonlinear programs". Mathematical Programming, 36(3), 307–339.
- Edgar, T. F., Himmelblau, D. M., Lasdon, L. S., 2001, "Optimization of Chemical Processes", McGraw-Hill, New York, ABD.
- Floudas, C. A., 1995, "Nonlinear and Mixed-Integer Optimization", Oxford University Press, New York, ABD
Fogler, H. S., 2016, "Elements of Chemical Reaction Engineering", Prentice Hall, Boston.
- Gábor, A., Banga, J. R., 2015, "Robust and efficient parameter estimation in dynamic models of biological systems", BMC Systems Biology, 9(1), 74.
- Grossmann, I. E., Viswanathan, J., Vecchietti, A., Raman, R., Kalvelagen, E., "DICOPT", https://www.gams.com/latest/docs/S_DICOPT.html, ziyaret tarihi: 15 Mayıs 2021.
- Hannemann-Tamás, R., Gábor, A., Szederkényi, G., Hangos, K. M., 2013, "Model complexity reduction of chemical reaction networks using mixed-integer quadratic programming". Computers & Mathematics with Applications, 65(10), 1575–1595.
- Hart, W. E., Laird, C., Watson, J.-P., Woodruff, D. L., 2012, "Pyomo – Optimization Modeling in Python", Advances in Modeling Agricultural Systems, Springer, Boston, US.
- Krantz, W. B., 2007, "Scaling Analysis in Modeling Transport and Reaction Processes", John Wiley & Sons Inc, Hoboken, NJ, USA.
- Land, A. H., Doig, A. G., 1960, "An Automatic Method of Solving Discrete Programming Problems", Econometrica, 28(3), 497.
- Lee, J. H., Shin, J., Realff, M. J., 2018, "Machine learning: Overview of the recent progresses and implications for the process systems engineering field", Computers and Chemical Engineering, 114, 111–121.
- Okino, M. S., Mavrovouniotis, M. L., 1998, "Simplification of Mathematical Models of Chemical Reaction Systems". Chemical Reviews, 98(2), 391–408.
- Snowden, T. J., van der Graaf, P. H., Tindall, M. J., 2017, "Methods of Model Reduction for Large Scale Biological Systems: A Survey of Current Methods and Trends", Bulletin of Mathematical Biology, 79(7), 1449–1486.
- Tang, J., Zhu, L., Fu, X., Dai, J., Guo, X., Hu, C., 2017, "Insights into the Kinetics and Reaction Network of Aluminum Chloride-Catalyzed Conversion of Glucose in NaCl–H2O/THF Biphasic System", ACS Catalysis, 7(1), 256–266.
- Zander, H.-J., Dittmeyer, R., Wagenhuber, J., 1999, "Dynamic Modeling of Chemical Reaction Systems with Neural Networks and Hybrid Models", Chemical Engineering & Technology, 22(7), 571–574.