Araştırma Makalesi
BibTex RIS Kaynak Göster

FABRICATION OF THE P-N JUNCTION ULTRAVIOLET PHOTODETECTORS BASED ON METAL OXIDE NANOPARTICLES

Yıl 2022, Cilt: 10 Sayı: 1, 240 - 248, 01.03.2022
https://doi.org/10.36306/konjes.1057176

Öz

Recently, wide bandgap metal oxides have attracted tremendous attention in the field of UV photodetectors due to their promising optoelectronic properties. Up to now, various approaches have been used to design metal oxide-based UV photodetectors. Among these designs, p-n junction UV photodetectors exhibited remarkable performance. In this study, TiO2/CuCrO2 p-n junction as a UV photodetector was fabricated with spin coating method for the first time. The morphological and optical properties of the fabricated devices were investigated in detail. Moreover, the effect of the CuCrO2 thickness on the performance of the UV photodetector was explored. The fabricated devices showed promising diode behavior and UV response. The responsivity (R) and specific detectivity (D*) of the best device were 3.11 mA/W and 2.37x1011 Jones, respectively at -1.5 V under 3 mW/cm2 light intensity.

Teşekkür

The author gratefully acknowledges Dr. Hasan AKYILDIZ and Dr. Mustafa KOCABAS for generously providing laboratory facilities to carry out this work.

Kaynakça

  • Ahmadi, M., Abrari, M., Ghanaatshoar, M., 2021, "An all-sputtered photovoltaic ultraviolet photodetector based on co-doped CuCrO2 and Al-doped ZnO heterojunction", Sci Rep, 11, 18694.
  • Bai, Z., Chen, S.-C., Lin, S.-S., Shi, Q., Lu, Y.-B., Song, S.-M., et al., 2021, "Review in optoelectronic properties of p-type CuCrO2 transparent conductive films", Surfaces and Interfaces, 22, 100824.
  • Cossuet, T., Resende, J., Rapenne, L., Chaix-Pluchery, O., Jiménez, C., Renou, G., et al., 2018, "ZnO/CuCrO2 core-shell nanowire heterostructures for self-powered UV photodetectors with fast response", Advanced Functional Materials, 28.
  • Deka Boruah, B., 2019, "Zinc oxide ultraviolet photodetectors: rapid progress from conventional to self-powered photodetectors", Nanoscale Advances, 1, 2059-2085.
  • Dursun, S., Kaya, I. C., Kalem, V., Akyildiz, H., 2018, "UV/visible light active CuCrO2 nanoparticle–SnO2 nanofiber p–n heterostructured photocatalysts for photocatalytic applications", Dalton Transactions, 47, 14662-14678.
  • Gao, Y., Xu, J., Shi, S., Dong, H., Cheng, Y., Wei, C., et al., 2018, "TiO2 nanorod arrays based self-powered UV photodetector: heterojunction with NiO nanoflakes and enhanced UV photoresponse", ACS Applied Materials & Interfaces, 10, 11269-11279.
  • Huang, H., Xie, Y., Yang, W., Zhang, F., Cai, J., Wu, Z., 2011, "Low-Dark-Current TiO2 MSM UV Photodetectors With Pt Schottky Contacts", IEEE Electron Device Letters, 32, 530-532.
  • Karaagac, H., Erdal Aygun, L., Parlak, M., Ghaffari, M., Biyikli, N., Kemal Okyay, A., 2012, "Au/TiO2 nanorod-based Schottky-type UV photodetectors", physica status solidi (RRL) – Rapid Research Letters, 6, 442-444.
  • Kaya, I. C., Akin, S., Akyildiz, H., Sonmezoglu, S., 2018, "Highly efficient tandem photoelectrochemical solar cells using coumarin6 dye-sensitized CuCrO2 delafossite oxide as photocathode", Solar Energy, 169, 196-205.
  • Kaya, İ. C., Sevindik, M. A., Akyıldız, H., 2016, "Characteristics of Fe- and Mg-doped CuCrO2 nanocrystals prepared by hydrothermal synthesis", Journal of Materials Science: Materials in Electronics, 27, 2404-2411.
  • Ko, Y. H., Raju, G. S. R., Kim, S., Yu, J. S., 2012, "Diffuse light-scattering properties of nanocracked and porous MoO3 films self-formed by electrodeposition and thermal annealing", physica status solidi (a), 209, 2161-2166.
  • Li, X., Gao, C., Duan, H., Lu, B., Pan, X., Xie, E., 2012, "Nanocrystalline TiO2 film based photoelectrochemical cell as self-powered UV-photodetector", Nano Energy, 1, 640-645.
  • Nicolaescu, M., Bandas, C., Orha, C., Şerban, V., Lazău, C., Căprărescu, S., 2021, "Fabrication of a UV photodetector based on n-TiO2/p-CuMnO2 heterostructures", Coatings, 11, 1380.
  • Noman, M. T., Ashraf, M. A., Ali, A., 2019, "Synthesis and applications of nano-TiO2: a review", Environmental Science and Pollution Research, 26, 3262-3291.
  • Tonooka, K., Kikuchi, N., 2006, "Preparation of transparent CuCrO2:Mg/ZnO p–n junctions by pulsed laser deposition", Thin Solid Films, 515, 2415-2418.
  • Wang, H., Yi, G., Zu, X., Jiang, X., Zhang, Z., Luo, H., 2015, "A highly sensitive and self-powered ultraviolet photodetector composed of titanium dioxide nanorods and polyaniline nanowires", Materials Letters, 138, 204-207.
  • Wu, C., Qiu, L., Li, S., Guo, D., Li, P., Wang, S., et al., 2021, "High sensitive and stable self-powered solar-blind photodetector based on solution-processed all inorganic CuMO2/Ga2O3 pn heterojunction", Materials Today Physics, 17, 100335.
  • Wu, J.-M., Kuo, C.-H., 2009, "Ultraviolet photodetectors made from SnO2 nanowires", Thin Solid Films, 517, 3870-3873.
  • Xie, C., Lu, X.-T., Tong, X.-W., Zhang, Z.-X., Liang, F.-X., Liang, L., et al., 2019, "Recent progress in solar-blind deep-ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors", Advanced Functional Materials, 29.
  • Xu, J., Zheng, W., Huang, F., 2019, "Gallium oxide solar-blind ultraviolet photodetectors: a review", Journal of Materials Chemistry C, 7, 8753-8770.
  • Yadav, P. V. K., Ajitha, B., Ahmed, C. M. A., Reddy, Y. A. K., Minnam Reddy, V. R., 2022, "Superior UV photodetector performance of TiO2 films using Nb doping", Journal of Physics and Chemistry of Solids, 160, 110350.
  • Yang, D., Du, F., Ren, Y., Kang, T., Hu, P., Teng, F., et al., 2021, "A high-performance NiO/TiO2 UV photodetector: the influence of the NiO layer position", Journal of Materials Chemistry C, 9, 14146-14153.
  • Zhang, N., Sun, J., Gong, H., 2019, "Transparent p-type semiconductors: copper-based oxides and oxychalcogenides", Coatings, 9, 137.
  • Zheng, L., Teng, F., Zhang, Z., Zhao, B., Fang, X., 2016, "Large scale, highly efficient and self-powered UV photodetectors enabled by all-solid-state n-TiO2 nanowell/p-NiO mesoporous nanosheet heterojunctions", Journal of Materials Chemistry C, 4, 10032-10039.
  • Zhou, S., Fang, X., Deng, Z., Li, D., Dong, W., Tao, R., et al., 2009, "Room temperature ozone sensing properties of p-type CuCrO2 nanocrystals", Sensors and Actuators B: Chemical, 143, 119-123.
  • Zou, Y., Zhang, Y., Hu, Y., Gu, H., 2018, "Ultraviolet detectors based on wide bandgap semiconductor nanowire: A review", Sensors (Basel), 18.

Metal Oksit Nanopartikül Esaslı P-N Eklem UV Fotodedektörlerin Üretimi

Yıl 2022, Cilt: 10 Sayı: 1, 240 - 248, 01.03.2022
https://doi.org/10.36306/konjes.1057176

Öz

Son zamanlarda, geniş bant aralığı değerine sahip metal oksitler umut vaat eden optoelektronik özelliklerinden dolayı UV fotodedektör uygulamalarında ilgi görmektedir. Bugüne kadar yapılan çalışmalarda, farklı yaklaşımlar kullanılarak metal oksit esaslı UV fotodedektörler geliştirilmeye çalışılmıştır. Bunlar içerisinde, p-n eklem UV fotodedektörler gösterdikleri performans ile dikkat çekmiştir. Bu çalışmada, basit çözelti esaslı yöntemler kullanılarak ilk defa TiO2/CuCrO2 p-n eklem UV fotodedektörler üretilmiştir. Üretilen malzemelerin morfolojik ve optik özellikleri detaylı bir şekilde analiz edilmiştir. Buna ek olarak, CuCrO2 film kalınlığının UV fotodedektör performansına etkisi incelenmiştir. Üretilen p-n eklemlerin umut vaat eden diyot davranış sergilediği ve UV ışığa karşı duyarlı olduğu gözlemlenmiştir. En iyi performans gösteren dedektörün, 1,5 V gerilim ve 3 mW/cm2 ışık şiddeti altında fotoyanıt değeri 3.11 mA/W ve spesifik dedektivite (D*) değeri ise 2.37x1011 Jones olarak bulunmuştur.

Kaynakça

  • Ahmadi, M., Abrari, M., Ghanaatshoar, M., 2021, "An all-sputtered photovoltaic ultraviolet photodetector based on co-doped CuCrO2 and Al-doped ZnO heterojunction", Sci Rep, 11, 18694.
  • Bai, Z., Chen, S.-C., Lin, S.-S., Shi, Q., Lu, Y.-B., Song, S.-M., et al., 2021, "Review in optoelectronic properties of p-type CuCrO2 transparent conductive films", Surfaces and Interfaces, 22, 100824.
  • Cossuet, T., Resende, J., Rapenne, L., Chaix-Pluchery, O., Jiménez, C., Renou, G., et al., 2018, "ZnO/CuCrO2 core-shell nanowire heterostructures for self-powered UV photodetectors with fast response", Advanced Functional Materials, 28.
  • Deka Boruah, B., 2019, "Zinc oxide ultraviolet photodetectors: rapid progress from conventional to self-powered photodetectors", Nanoscale Advances, 1, 2059-2085.
  • Dursun, S., Kaya, I. C., Kalem, V., Akyildiz, H., 2018, "UV/visible light active CuCrO2 nanoparticle–SnO2 nanofiber p–n heterostructured photocatalysts for photocatalytic applications", Dalton Transactions, 47, 14662-14678.
  • Gao, Y., Xu, J., Shi, S., Dong, H., Cheng, Y., Wei, C., et al., 2018, "TiO2 nanorod arrays based self-powered UV photodetector: heterojunction with NiO nanoflakes and enhanced UV photoresponse", ACS Applied Materials & Interfaces, 10, 11269-11279.
  • Huang, H., Xie, Y., Yang, W., Zhang, F., Cai, J., Wu, Z., 2011, "Low-Dark-Current TiO2 MSM UV Photodetectors With Pt Schottky Contacts", IEEE Electron Device Letters, 32, 530-532.
  • Karaagac, H., Erdal Aygun, L., Parlak, M., Ghaffari, M., Biyikli, N., Kemal Okyay, A., 2012, "Au/TiO2 nanorod-based Schottky-type UV photodetectors", physica status solidi (RRL) – Rapid Research Letters, 6, 442-444.
  • Kaya, I. C., Akin, S., Akyildiz, H., Sonmezoglu, S., 2018, "Highly efficient tandem photoelectrochemical solar cells using coumarin6 dye-sensitized CuCrO2 delafossite oxide as photocathode", Solar Energy, 169, 196-205.
  • Kaya, İ. C., Sevindik, M. A., Akyıldız, H., 2016, "Characteristics of Fe- and Mg-doped CuCrO2 nanocrystals prepared by hydrothermal synthesis", Journal of Materials Science: Materials in Electronics, 27, 2404-2411.
  • Ko, Y. H., Raju, G. S. R., Kim, S., Yu, J. S., 2012, "Diffuse light-scattering properties of nanocracked and porous MoO3 films self-formed by electrodeposition and thermal annealing", physica status solidi (a), 209, 2161-2166.
  • Li, X., Gao, C., Duan, H., Lu, B., Pan, X., Xie, E., 2012, "Nanocrystalline TiO2 film based photoelectrochemical cell as self-powered UV-photodetector", Nano Energy, 1, 640-645.
  • Nicolaescu, M., Bandas, C., Orha, C., Şerban, V., Lazău, C., Căprărescu, S., 2021, "Fabrication of a UV photodetector based on n-TiO2/p-CuMnO2 heterostructures", Coatings, 11, 1380.
  • Noman, M. T., Ashraf, M. A., Ali, A., 2019, "Synthesis and applications of nano-TiO2: a review", Environmental Science and Pollution Research, 26, 3262-3291.
  • Tonooka, K., Kikuchi, N., 2006, "Preparation of transparent CuCrO2:Mg/ZnO p–n junctions by pulsed laser deposition", Thin Solid Films, 515, 2415-2418.
  • Wang, H., Yi, G., Zu, X., Jiang, X., Zhang, Z., Luo, H., 2015, "A highly sensitive and self-powered ultraviolet photodetector composed of titanium dioxide nanorods and polyaniline nanowires", Materials Letters, 138, 204-207.
  • Wu, C., Qiu, L., Li, S., Guo, D., Li, P., Wang, S., et al., 2021, "High sensitive and stable self-powered solar-blind photodetector based on solution-processed all inorganic CuMO2/Ga2O3 pn heterojunction", Materials Today Physics, 17, 100335.
  • Wu, J.-M., Kuo, C.-H., 2009, "Ultraviolet photodetectors made from SnO2 nanowires", Thin Solid Films, 517, 3870-3873.
  • Xie, C., Lu, X.-T., Tong, X.-W., Zhang, Z.-X., Liang, F.-X., Liang, L., et al., 2019, "Recent progress in solar-blind deep-ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors", Advanced Functional Materials, 29.
  • Xu, J., Zheng, W., Huang, F., 2019, "Gallium oxide solar-blind ultraviolet photodetectors: a review", Journal of Materials Chemistry C, 7, 8753-8770.
  • Yadav, P. V. K., Ajitha, B., Ahmed, C. M. A., Reddy, Y. A. K., Minnam Reddy, V. R., 2022, "Superior UV photodetector performance of TiO2 films using Nb doping", Journal of Physics and Chemistry of Solids, 160, 110350.
  • Yang, D., Du, F., Ren, Y., Kang, T., Hu, P., Teng, F., et al., 2021, "A high-performance NiO/TiO2 UV photodetector: the influence of the NiO layer position", Journal of Materials Chemistry C, 9, 14146-14153.
  • Zhang, N., Sun, J., Gong, H., 2019, "Transparent p-type semiconductors: copper-based oxides and oxychalcogenides", Coatings, 9, 137.
  • Zheng, L., Teng, F., Zhang, Z., Zhao, B., Fang, X., 2016, "Large scale, highly efficient and self-powered UV photodetectors enabled by all-solid-state n-TiO2 nanowell/p-NiO mesoporous nanosheet heterojunctions", Journal of Materials Chemistry C, 4, 10032-10039.
  • Zhou, S., Fang, X., Deng, Z., Li, D., Dong, W., Tao, R., et al., 2009, "Room temperature ozone sensing properties of p-type CuCrO2 nanocrystals", Sensors and Actuators B: Chemical, 143, 119-123.
  • Zou, Y., Zhang, Y., Hu, Y., Gu, H., 2018, "Ultraviolet detectors based on wide bandgap semiconductor nanowire: A review", Sensors (Basel), 18.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

İsmail Cihan Kaya 0000-0003-0773-0391

Yayımlanma Tarihi 1 Mart 2022
Gönderilme Tarihi 13 Ocak 2022
Kabul Tarihi 17 Şubat 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 10 Sayı: 1

Kaynak Göster

IEEE İ. C. Kaya, “FABRICATION OF THE P-N JUNCTION ULTRAVIOLET PHOTODETECTORS BASED ON METAL OXIDE NANOPARTICLES”, KONJES, c. 10, sy. 1, ss. 240–248, 2022, doi: 10.36306/konjes.1057176.