Research Article
BibTex RIS Cite

Capacitance-Based Self-Sensing Cement-Based Composite Produced by Traditional Methods

Year 2022, Volume: 10 Issue: 2, 388 - 395, 01.06.2022
https://doi.org/10.36306/konjes.1054628

Abstract

In this study, capacitance based self-sensing properties of the cement paste is investigated. Continuous and discontinuous loading cycles (minimum stress is 6 kPa, maximum stress is 36 kPa) are applied to the cement pastes. A correlation between stress and capacitance is observed. The greeter the compressive stress on the cement paste, the lower the capacitance. Capacitance change is irreversible for the entire stress regime. Initial capacitance value (un-loaded state) of the cement paste is 119.51 pF, whereas capacitance value of the specimen under 36 kPa compressive stress is 119.41 pF. Fractional change in capacitance at the highest stress is 9.2x10-4.

References

  • Bekzhanova, Z., Memon, S. A., Kim, J. R., 2021, “Self-Sensing Cementitious Composites: Review and Perspective”, Nanomaterials, Cilt 11, Sayı 9, ss. 2355, https://doi.org/10.3390/NANO11092355.
  • Chung, D. D. L., 2021, “Self-sensing concrete: from resistance-based sensing to capacitance-based sensing”, International Journal of Smart and Nano Materials, Cilt 12, Sayı 1, ss. 1–19, Taylor & Francis. https://doi.org/10.1080/19475411.2020.1843560.
  • Chung, D. D. L., Wang, Y., 2018, “Capacitance-based stress self-sensing in cement paste without requiring any admixture”, Cement and Concrete Composites, Cilt 94, ss. 255–263, https://doi.org/10.1016/j.cemconcomp.2018.09.017.
  • Chung, D. D. L., Xi, X., 2021, “Piezopermittivity for capacitance-based strain/stress sensing”, Sensors and Actuators A: Physical, Cilt 332, ss. 113028, https://doi.org/10.1016/j.sna.2021.113028.
  • Han, J., Cai, J., Pan, J., Sun, Y., 2021, “Study on the conductivity of carbon fiber self-sensing high ductility cementitious composite”, Journal of Building Engineering, Cilt 43, ss. 103125, https://doi.org/10.1016/j.jobe.2021.103125.
  • Han, J., Pan, J., Cai, J., Li, X., 2020, “A review on carbon-based self-sensing cementitious composites”, Construction and Building Materials, Cilt 265, ss. 120764, https://doi.org/10.1016/J.CONBUILDMAT.2020.120764.
  • Jung, M., Lee, Y. soon, Hong, S. G., Moon, J., 2020, “Carbon nanotubes (CNTs) in ultra-high performance concrete (UHPC): Dispersion, mechanical properties, and electromagnetic interference (EMI) shielding effectiveness (SE)”, Cement and Concrete Research, Cilt 131, ss. 106017, https://doi.org/10.1016/J.CEMCONRES.2020.106017.
  • Monteiro, A. O., Cachim, P. B., Costa, P. M. F. J., 2017, “Self-sensing piezoresistive cement composite loaded with carbon black particles”, Cement and Concrete Composites, Cilt 81, ss. 59–65, https://doi.org/10.1016/j.cemconcomp.2017.04.009.
  • Ozturk, M., Chung, D. D. L., 2021, “Capacitance-based stress self-sensing effectiveness of a model asphalt without functional component”, Construction and Building Materials, Cilt 294, https://doi.org/10.1016/j.conbuildmat.2021.123591.
  • Papanikolaou, I., Arena, N., Al-Tabbaa, A., 2019, “Graphene nanoplatelet reinforced concrete for self-sensing structures – A lifecycle assessment perspective”, Journal of Cleaner Production, Cilt 240, ss. 118202, https://doi.org/10.1016/j.jclepro.2019.118202.
  • Rovnaník, P., Kusák, I., Bayer, P., Schmid, P., Fiala, L., 2019, “Electrical and self-sensing properties of alkali-activated slag composite with graphite filler”, Materials, Cilt 12, Sayı 10, ss. 1616, https://doi.org/10.3390/ma12101616.
  • Ruan, Y., Zhou, D., Sun, S., Wu, X., Yu, X., Hou, J., Dong, X., Han, B., 2017, “Self-damping cementitious composites with multi-layer graphene”, Materials Research Express, Cilt 4, Sayı 7, ss. 075605, https://doi.org/10.1088/2053-1591/AA78E4.
  • Saleem, M., Elshami, M. M., Asce, M., Najjar, M., 2016, “Development, Testing, and Implementation Strategy of a Translucent Concrete-Based Smart Lane Separator for Increased Traffic Safety”, Journal of Construction Engineering and Management, Cilt 143, Sayı 5, ss. 04016129, https://doi.org/10.1061/(ASCE)CO.1943-7862.0001240.
  • Shah, K. W., Huseien, G. F., 2020, “Biomimetic Self-Healing Cementitious Construction Materials for Smart Buildings”, Biomimetics 2020, Cilt 5, Sayı 4, ss. 47, https://doi.org/10.3390/BIOMIMETICS5040047.
  • Tian, Z., Li, Y., Zheng, J., Wang, S., 2019, “A state-of-the-art on self-sensing concrete: Materials, fabrication and properties”, Composites Part B: Engineering, Cilt 177, ss. 107437, Elsevier, https://doi.org/10.1016/j.compositesb.2019.107437.
  • Wang, H., Shi, F., Shen, J., Zhang, A., Zhang, L., Huang, H., Liu, J., Jin, K., Feng, L., Tang, Z., 2021, “Research on the self-sensing and mechanical properties of aligned stainless steel fiber-reinforced reactive powder concrete”, Cement and Concrete Composites, Cilt 119, ss. 104001, https://doi.org/10.1016/j.cemconcomp.2021.104001.
  • Xi, X., Chung, D. D. L., 2019, “Electret, piezoelectret, dielectricity and piezoresistivity discovered in exfoliated-graphite-based flexible graphite, with applications in mechanical sensing and electric powering”, Carbon, Cilt 150, ss. 531–548, https://doi.org/10.1016/j.carbon.2019.05.040.
  • Xi, X., Chung, D. D. L., 2020, “Deviceless cement-based structures as energy sources that enable structural self-powering”, Applied Energy, Cilt 280, ss. 115916, https://doi.org/10.1016/j.apenergy.2020.115916.
  • Yan, S., Ma, H., Li, P., Song, G., Wu, J., 2017, “Development and Application of a Structural Health Monitoring System Based on Wireless Smart Aggregates”, Sensors, Cilt 17, Sayı 7, ss. 1641, https://doi.org/10.3390/S17071641.

GELENEKSEL YÖNTEMLERLE ÜRETİLEN KAPASİTANS TABANLI KENDİNDEN SENSÖRLÜ ÇİMENTO ESASLI KOMPOZİT

Year 2022, Volume: 10 Issue: 2, 388 - 395, 01.06.2022
https://doi.org/10.36306/konjes.1054628

Abstract

Bu çalışmada, çimento hamurunun kapasitans tabanlı kendiliğinden algılama özelliği incelenmiştir. Çimento hamurlarına sürekli ve süreksiz yükleme döngüleri (minimum gerilme 6 kPa, maksimum gerilme 36 kPa) uygulanmıştır. Gerilme ve kapasitans arasında bir ilişki gözlemlenmiştir. Çimento hamuru üzerindeki basınç gerilmesinin arttırılmasıyla, kapasitans değerinde düşüşler ölçülmüştür. Kapasitans değişikliği tüm gerilme aralığı için geri dönümlüdür. Çimento hamurunun başlangıç kapasitans değeri (yüksüz hali) 119.51 pF iken numunenin 36 kPa basınç gerilmesi altındaki kapasitans değeri 119.41 pF’dir. En yüksek gerilmede kapasitansta fraksiyonel değişim 9.2x10-4’tür.

References

  • Bekzhanova, Z., Memon, S. A., Kim, J. R., 2021, “Self-Sensing Cementitious Composites: Review and Perspective”, Nanomaterials, Cilt 11, Sayı 9, ss. 2355, https://doi.org/10.3390/NANO11092355.
  • Chung, D. D. L., 2021, “Self-sensing concrete: from resistance-based sensing to capacitance-based sensing”, International Journal of Smart and Nano Materials, Cilt 12, Sayı 1, ss. 1–19, Taylor & Francis. https://doi.org/10.1080/19475411.2020.1843560.
  • Chung, D. D. L., Wang, Y., 2018, “Capacitance-based stress self-sensing in cement paste without requiring any admixture”, Cement and Concrete Composites, Cilt 94, ss. 255–263, https://doi.org/10.1016/j.cemconcomp.2018.09.017.
  • Chung, D. D. L., Xi, X., 2021, “Piezopermittivity for capacitance-based strain/stress sensing”, Sensors and Actuators A: Physical, Cilt 332, ss. 113028, https://doi.org/10.1016/j.sna.2021.113028.
  • Han, J., Cai, J., Pan, J., Sun, Y., 2021, “Study on the conductivity of carbon fiber self-sensing high ductility cementitious composite”, Journal of Building Engineering, Cilt 43, ss. 103125, https://doi.org/10.1016/j.jobe.2021.103125.
  • Han, J., Pan, J., Cai, J., Li, X., 2020, “A review on carbon-based self-sensing cementitious composites”, Construction and Building Materials, Cilt 265, ss. 120764, https://doi.org/10.1016/J.CONBUILDMAT.2020.120764.
  • Jung, M., Lee, Y. soon, Hong, S. G., Moon, J., 2020, “Carbon nanotubes (CNTs) in ultra-high performance concrete (UHPC): Dispersion, mechanical properties, and electromagnetic interference (EMI) shielding effectiveness (SE)”, Cement and Concrete Research, Cilt 131, ss. 106017, https://doi.org/10.1016/J.CEMCONRES.2020.106017.
  • Monteiro, A. O., Cachim, P. B., Costa, P. M. F. J., 2017, “Self-sensing piezoresistive cement composite loaded with carbon black particles”, Cement and Concrete Composites, Cilt 81, ss. 59–65, https://doi.org/10.1016/j.cemconcomp.2017.04.009.
  • Ozturk, M., Chung, D. D. L., 2021, “Capacitance-based stress self-sensing effectiveness of a model asphalt without functional component”, Construction and Building Materials, Cilt 294, https://doi.org/10.1016/j.conbuildmat.2021.123591.
  • Papanikolaou, I., Arena, N., Al-Tabbaa, A., 2019, “Graphene nanoplatelet reinforced concrete for self-sensing structures – A lifecycle assessment perspective”, Journal of Cleaner Production, Cilt 240, ss. 118202, https://doi.org/10.1016/j.jclepro.2019.118202.
  • Rovnaník, P., Kusák, I., Bayer, P., Schmid, P., Fiala, L., 2019, “Electrical and self-sensing properties of alkali-activated slag composite with graphite filler”, Materials, Cilt 12, Sayı 10, ss. 1616, https://doi.org/10.3390/ma12101616.
  • Ruan, Y., Zhou, D., Sun, S., Wu, X., Yu, X., Hou, J., Dong, X., Han, B., 2017, “Self-damping cementitious composites with multi-layer graphene”, Materials Research Express, Cilt 4, Sayı 7, ss. 075605, https://doi.org/10.1088/2053-1591/AA78E4.
  • Saleem, M., Elshami, M. M., Asce, M., Najjar, M., 2016, “Development, Testing, and Implementation Strategy of a Translucent Concrete-Based Smart Lane Separator for Increased Traffic Safety”, Journal of Construction Engineering and Management, Cilt 143, Sayı 5, ss. 04016129, https://doi.org/10.1061/(ASCE)CO.1943-7862.0001240.
  • Shah, K. W., Huseien, G. F., 2020, “Biomimetic Self-Healing Cementitious Construction Materials for Smart Buildings”, Biomimetics 2020, Cilt 5, Sayı 4, ss. 47, https://doi.org/10.3390/BIOMIMETICS5040047.
  • Tian, Z., Li, Y., Zheng, J., Wang, S., 2019, “A state-of-the-art on self-sensing concrete: Materials, fabrication and properties”, Composites Part B: Engineering, Cilt 177, ss. 107437, Elsevier, https://doi.org/10.1016/j.compositesb.2019.107437.
  • Wang, H., Shi, F., Shen, J., Zhang, A., Zhang, L., Huang, H., Liu, J., Jin, K., Feng, L., Tang, Z., 2021, “Research on the self-sensing and mechanical properties of aligned stainless steel fiber-reinforced reactive powder concrete”, Cement and Concrete Composites, Cilt 119, ss. 104001, https://doi.org/10.1016/j.cemconcomp.2021.104001.
  • Xi, X., Chung, D. D. L., 2019, “Electret, piezoelectret, dielectricity and piezoresistivity discovered in exfoliated-graphite-based flexible graphite, with applications in mechanical sensing and electric powering”, Carbon, Cilt 150, ss. 531–548, https://doi.org/10.1016/j.carbon.2019.05.040.
  • Xi, X., Chung, D. D. L., 2020, “Deviceless cement-based structures as energy sources that enable structural self-powering”, Applied Energy, Cilt 280, ss. 115916, https://doi.org/10.1016/j.apenergy.2020.115916.
  • Yan, S., Ma, H., Li, P., Song, G., Wu, J., 2017, “Development and Application of a Structural Health Monitoring System Based on Wireless Smart Aggregates”, Sensors, Cilt 17, Sayı 7, ss. 1641, https://doi.org/10.3390/S17071641.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Murat Öztürk 0000-0003-3389-4883

Publication Date June 1, 2022
Submission Date January 7, 2022
Acceptance Date April 18, 2022
Published in Issue Year 2022 Volume: 10 Issue: 2

Cite

IEEE M. Öztürk, “GELENEKSEL YÖNTEMLERLE ÜRETİLEN KAPASİTANS TABANLI KENDİNDEN SENSÖRLÜ ÇİMENTO ESASLI KOMPOZİT”, KONJES, vol. 10, no. 2, pp. 388–395, 2022, doi: 10.36306/konjes.1054628.