Research Article
BibTex RIS Cite

PERFORMANCE ANALYSIS OF A THERMOSIPHON CHARGED WITH DEIONIZED WATER/ ETHYLENE GLYCOL MIXTURE BASED GRAPHENE NANO PLATELET NANOFLUID

Year 2022, Volume: 10 Issue: 3, 679 - 691, 01.09.2022
https://doi.org/10.36306/konjes.1099896

Abstract

The thermosiphons are wickless heat pipes which work under gravity force. Different working fluids like water, engine oil, ethylene glycol are used in this equipments. Nanofluids including various nano particles are also used in the thermosiphons. In this study, deionized water (DW)/ ethylene glycol (EG) mixture based graphene nano platelet (GNP) nanofluid was charged in a thermosiphon and thermal performance analysis was performed. The mixing rate of DW:EG was 95:5 while the particle concentration was 1 %. Triton X-100 was added to the mixture as surfactant. To specify the effect of GNP, a set of experiments for both DW+EG and DW+EG+GNP nanofluid were carried out at the same operating conditions. The results show that GNPs had a positive effect on the performance of the thermosiphon. The presence of GNP in the base fluid was decreased the thermal resistance while it was increased the thermal efficiency of the thermosiphon. The maximum efficiency value was reached as 57.1 % when the nanofluid used. At the same condition, the efficiency was 49.5 % when the working fluid was DW+EG mixture.

References

  • Aberoumand, S. and Jafarimoghaddam, A., 2017, "Experimental study on synthesis, stability, thermal conductivity and viscosity of Cu–engine oil nanofluid", Journal of the Taiwan Institute of Chemical Engineers, vol. 71, pp. 315–322.
  • Arif, M., Kumam, P., Khan, D. and Watthayu, W., 2021, "Thermal performance of GO-MoS2/ engine oil as Maxwell hybrid nanofluid flow with heat transfer in oscillating vertical cylinder", Case Studies in Thermal Engineering, vol. 27, No. May., Article ID. 101290.
  • Aydın, D. Y., Gürü, M., Sözen, A. and Çiftçi, E., 2020, "Thermal performance improvement of the heat pipe by employing dolomite/ethylene glycol nanofluid", International Journal of Renewable Energy Development, vol. 9, No. 1, pp. 23–27.
  • Choi, S. U. S. and Eastman, J. A., "Enhancing thermal conductivity of fluids with nanoparticles", International Mechanical Engineering Congress and Exhibition, United States, 12-17 November 1995.
  • Cruz, P. A. D., Yamat, E.-J. E., Nuqui, J. P. E., & Soriano, A. N. (2022). Computational Fluid Dynamics (CFD) Analysis of the Heat Transfer and Fluid Flow of Copper (II) Oxide-Water Nanofluid in a Shell and Tube Heat Exchanger. Digital Chemical Engineering, Early View, 100014. https://doi.org/10.1016/j.dche.2022.100014
  • Dong, J., Zheng, Q., Xiong, C., Sun, E. and Chen, J., 2022, "Experimental investigation and application of stability and thermal characteristics of SiO2-ethylene-glycol/water nanofluids", International Journal of Thermal Sciences, vol. 176, No. February, Article ID. 107533.
  • Filiz, Ç. and Yetişken, Y., 2021, "Sıralı Tip Isı Borulu Isı Değiştiricilerinde MgO+CuO/Su ve MgOAl2O3/Su Nanoakışkanları Kullanılarak Performansın İyileştirilmesi: Karşılaştırmalı Deneysel Çalışma", Journal of Polytechnic, vol. 24, No. 4, pp. 1327–1335.
  • Ghorabaee, H., Emami, M. R. S., Moosakazemi, F., Karimi, N., Cheraghian, G. and Afrand, M., 2021, "The use of nanofluids in thermosyphon heat pipe: A comprehensive review", Powder Technology, vol. 394, pp. 250–269.
  • Kakavandi, A. and Akbari, M., 2018, "Experimental investigation of thermal conductivity of nanofluids containing of hybrid nanoparticles suspended in binary base fluids and propose a new correlation", International Journal of Heat and Mass Transfer, vol. 124, pp. 742–751.
  • Kumar, J. and Kaushal, R., 2020, "Experimental analysis of heat pipe based evacuated tube solar collector using graphene/ ethylene glycol-water nanofluids", Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Ahead-Of-Print, 1-19. DOI: 10.1080/15567036.2020.1854393
  • Martin, K. and Boran, K., 2021, "Isı Borulu Havadan Havaya Isı Değiştiricisinde CuO+Fe/Saf Su ve CuO/Saf Su Nano Akışkanlarının Kullanımının Isıl Performansa Etkisinin İncelenmesi", Journal of Polytechnic, vol. 24 No. 3, pp. 763–770.
  • Nfawa, S. R., Abu Talib, A. R., Basri, A. A. and Masuri, S. U., 2021, "Novel use of MgO nanoparticle additive for enhancing the thermal conductivity of CuO/water nanofluid", Case Studies in Thermal Engineering, vol. 27, No. June, Article ID. 101279.
  • Soltani, F., Toghraie, D. and Karimipour, A., 2020, "Experimental measurements of thermal conductivity of engine oil-based hybrid and mono nanofluids with tungsten oxide (WO3) and MWCNTs inclusions", Powder Technology, vol. 371, pp. 37–44.
  • Soltani, O. and Akbari, M., 2016 "Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid: Experimental study", Physica E: Low-Dimensional Systems and Nanostructures, vol. 84 No. October, pp. 564–570.
  • Sözen, A., Filiz, Ç., Aytaç, İ., Martin, K., Ali, H. M., Boran, K. and Yetişken, Y., 2021, "Upgrading of the Performance of an Air-to-Air Heat Exchanger Using Graphene/Water Nanofluid", International Journal of Thermophysics, vol. 42, No. 3, pp. 1–15.
  • Suganthi, K. S., Leela Vinodhan, V. and Rajan, K. S., 2014, "Heat transfer performance and transport properties of ZnO-ethylene glycol and ZnO-ethylene glycol-water nanofluid coolants", Applied Energy, vol. 135, pp. 548–559.
  • Sun, L., Zhao, Q., Zhang, Y., Gao, W. and Jing, D., 2021, "Insights into the rheological behavior of ethanol-based metal oxide nanofluids", Journal of Molecular Liquids, vol. 323, Article ID. 115006.
  • Sundar, L. S., Farooky, M. H., Sarada, S. N. and Singh, M. K., 2013, "Experimental thermal conductivity of ethylene glycol and water mixture based low volume concentration of Al2O3 and CuO nanofluids", International Communications in Heat and Mass Transfer, vol. 41, pp. 41–46.
  • Sundar, L. S., Punnaiah, V., Sharma, K. V., Chamkha, A. J. and Sousa, A. C. M., 2021, "Thermal entropy and exergy efficiency analyses of nanodiamond/water nanofluid flow in a plate heat exchanger", Diamond and Related Materials, vol. 120, No. August, Article ID. 108648.
  • Vasheghani, M., Marzbanrad, E., Zamani, C., Aminy, M. and Raissi, B., 2013, "Thermal Conductivity And Viscosity Of Tio2−Engine Oil Nanofluids", Nanoscience and Technology: An International Journal, vol. 4, No. 2, pp. 145–156.
  • Yashawantha, K. M. and Vinod, A. V., 2021, "ANFIS modelling of effective thermal conductivity of ethylene glycol and water nanofluids for low temperature heat transfer application", Thermal Science and Engineering Progress, vol. 24, No. March, Article ID. 100936.

Deiyonize Su/ Etilen Glikol Karışımı Bazlı Grafen Nano Plaka İçeren Nanoakışkan ile Şarj Edilen Bir Termosifonun Performans Analizi

Year 2022, Volume: 10 Issue: 3, 679 - 691, 01.09.2022
https://doi.org/10.36306/konjes.1099896

Abstract

Termosifonlar yer çekimi altında çalışan fitilsiz ısı borularıdır. Bu ekipmanlarda su, motor yağı, etilen glikol gibi farklı çalışma akışkanları kullanılmaktadır. Termosifonlarda çeşitli nano parçacıklar içeren nano akışkanlar da kullanılmaktadır. Bu çalışmada, deiyonize su/etilen glikol karışımı bazlı grafen nano plaka içeren bir nano akışkan termosifona şarj edildi ve ısıl performans analizi yapıldı. Deiyonize su/etilen glikol karıştırma oranı 95:5 iken partikül konsantrasyonu %1 idi. Karışıma yüzey aktif madde olarak Triton X-100 ilave edildi. Grafenin etkisini belirlemek için, aynı çalışma koşullarında hem DW+EG hem de DW+EG+GNP nanoakışkanı için bir dizi deney yapılmıştır. Sonuçlar grafenin termosifon performansı üzerinde olumlu bir etkiye sahip olduğunu göstermiştir. Baz akışkanda grafen bulunması, termosifonun ısıl verimini artırırken ısıl direncini azaltmıştır. Nanoakışkan kullanıldığında maksimum verim değerine % 57.1 olarak ulaşılmıştır. Aynı durumda, çalışma akışkanı DW+EG karışımı olduğunda verim % 49.5 olmuştur.

References

  • Aberoumand, S. and Jafarimoghaddam, A., 2017, "Experimental study on synthesis, stability, thermal conductivity and viscosity of Cu–engine oil nanofluid", Journal of the Taiwan Institute of Chemical Engineers, vol. 71, pp. 315–322.
  • Arif, M., Kumam, P., Khan, D. and Watthayu, W., 2021, "Thermal performance of GO-MoS2/ engine oil as Maxwell hybrid nanofluid flow with heat transfer in oscillating vertical cylinder", Case Studies in Thermal Engineering, vol. 27, No. May., Article ID. 101290.
  • Aydın, D. Y., Gürü, M., Sözen, A. and Çiftçi, E., 2020, "Thermal performance improvement of the heat pipe by employing dolomite/ethylene glycol nanofluid", International Journal of Renewable Energy Development, vol. 9, No. 1, pp. 23–27.
  • Choi, S. U. S. and Eastman, J. A., "Enhancing thermal conductivity of fluids with nanoparticles", International Mechanical Engineering Congress and Exhibition, United States, 12-17 November 1995.
  • Cruz, P. A. D., Yamat, E.-J. E., Nuqui, J. P. E., & Soriano, A. N. (2022). Computational Fluid Dynamics (CFD) Analysis of the Heat Transfer and Fluid Flow of Copper (II) Oxide-Water Nanofluid in a Shell and Tube Heat Exchanger. Digital Chemical Engineering, Early View, 100014. https://doi.org/10.1016/j.dche.2022.100014
  • Dong, J., Zheng, Q., Xiong, C., Sun, E. and Chen, J., 2022, "Experimental investigation and application of stability and thermal characteristics of SiO2-ethylene-glycol/water nanofluids", International Journal of Thermal Sciences, vol. 176, No. February, Article ID. 107533.
  • Filiz, Ç. and Yetişken, Y., 2021, "Sıralı Tip Isı Borulu Isı Değiştiricilerinde MgO+CuO/Su ve MgOAl2O3/Su Nanoakışkanları Kullanılarak Performansın İyileştirilmesi: Karşılaştırmalı Deneysel Çalışma", Journal of Polytechnic, vol. 24, No. 4, pp. 1327–1335.
  • Ghorabaee, H., Emami, M. R. S., Moosakazemi, F., Karimi, N., Cheraghian, G. and Afrand, M., 2021, "The use of nanofluids in thermosyphon heat pipe: A comprehensive review", Powder Technology, vol. 394, pp. 250–269.
  • Kakavandi, A. and Akbari, M., 2018, "Experimental investigation of thermal conductivity of nanofluids containing of hybrid nanoparticles suspended in binary base fluids and propose a new correlation", International Journal of Heat and Mass Transfer, vol. 124, pp. 742–751.
  • Kumar, J. and Kaushal, R., 2020, "Experimental analysis of heat pipe based evacuated tube solar collector using graphene/ ethylene glycol-water nanofluids", Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Ahead-Of-Print, 1-19. DOI: 10.1080/15567036.2020.1854393
  • Martin, K. and Boran, K., 2021, "Isı Borulu Havadan Havaya Isı Değiştiricisinde CuO+Fe/Saf Su ve CuO/Saf Su Nano Akışkanlarının Kullanımının Isıl Performansa Etkisinin İncelenmesi", Journal of Polytechnic, vol. 24 No. 3, pp. 763–770.
  • Nfawa, S. R., Abu Talib, A. R., Basri, A. A. and Masuri, S. U., 2021, "Novel use of MgO nanoparticle additive for enhancing the thermal conductivity of CuO/water nanofluid", Case Studies in Thermal Engineering, vol. 27, No. June, Article ID. 101279.
  • Soltani, F., Toghraie, D. and Karimipour, A., 2020, "Experimental measurements of thermal conductivity of engine oil-based hybrid and mono nanofluids with tungsten oxide (WO3) and MWCNTs inclusions", Powder Technology, vol. 371, pp. 37–44.
  • Soltani, O. and Akbari, M., 2016 "Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid: Experimental study", Physica E: Low-Dimensional Systems and Nanostructures, vol. 84 No. October, pp. 564–570.
  • Sözen, A., Filiz, Ç., Aytaç, İ., Martin, K., Ali, H. M., Boran, K. and Yetişken, Y., 2021, "Upgrading of the Performance of an Air-to-Air Heat Exchanger Using Graphene/Water Nanofluid", International Journal of Thermophysics, vol. 42, No. 3, pp. 1–15.
  • Suganthi, K. S., Leela Vinodhan, V. and Rajan, K. S., 2014, "Heat transfer performance and transport properties of ZnO-ethylene glycol and ZnO-ethylene glycol-water nanofluid coolants", Applied Energy, vol. 135, pp. 548–559.
  • Sun, L., Zhao, Q., Zhang, Y., Gao, W. and Jing, D., 2021, "Insights into the rheological behavior of ethanol-based metal oxide nanofluids", Journal of Molecular Liquids, vol. 323, Article ID. 115006.
  • Sundar, L. S., Farooky, M. H., Sarada, S. N. and Singh, M. K., 2013, "Experimental thermal conductivity of ethylene glycol and water mixture based low volume concentration of Al2O3 and CuO nanofluids", International Communications in Heat and Mass Transfer, vol. 41, pp. 41–46.
  • Sundar, L. S., Punnaiah, V., Sharma, K. V., Chamkha, A. J. and Sousa, A. C. M., 2021, "Thermal entropy and exergy efficiency analyses of nanodiamond/water nanofluid flow in a plate heat exchanger", Diamond and Related Materials, vol. 120, No. August, Article ID. 108648.
  • Vasheghani, M., Marzbanrad, E., Zamani, C., Aminy, M. and Raissi, B., 2013, "Thermal Conductivity And Viscosity Of Tio2−Engine Oil Nanofluids", Nanoscience and Technology: An International Journal, vol. 4, No. 2, pp. 145–156.
  • Yashawantha, K. M. and Vinod, A. V., 2021, "ANFIS modelling of effective thermal conductivity of ethylene glycol and water nanofluids for low temperature heat transfer application", Thermal Science and Engineering Progress, vol. 24, No. March, Article ID. 100936.
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Kerim Martin 0000-0002-1960-8070

Publication Date September 1, 2022
Submission Date April 7, 2022
Acceptance Date July 7, 2022
Published in Issue Year 2022 Volume: 10 Issue: 3

Cite

IEEE K. Martin, “PERFORMANCE ANALYSIS OF A THERMOSIPHON CHARGED WITH DEIONIZED WATER/ ETHYLENE GLYCOL MIXTURE BASED GRAPHENE NANO PLATELET NANOFLUID”, KONJES, vol. 10, no. 3, pp. 679–691, 2022, doi: 10.36306/konjes.1099896.