Research Article
BibTex RIS Cite

Investigation of the Effect of Cavity Trailing Edge on Noise Level

Year 2022, Volume: 10 Issue: 3, 719 - 731, 01.09.2022
https://doi.org/10.36306/konjes.1107037

Abstract

In this study, the noise level caused by the fluid flow in the rectangular cavity and the flow structures around the cavity were numerically investigated. According to the findings, it aims to reduce the noise level by making changes in the cavity section. First, the results of the flow structure obtained by performing numerical analysis for the rectangular-section cavity application were validated by the studies in the literature. Then, five different geometries with diameter ratios of r/h=0.1, 0.2, 0.5, 0.75 and 1.0 were designed for the trailing edge of the cavity where the highest noise level occurs and for these geometries, numerical analyzes were done with the SST k-ω turbulence model, the results of which were validated, at the range of 10-35 m/s uniform velocity. Cavity flow results designed with rectangular cross-section and five different diameter ratios on the trailing edge are presented as contours and numerical data. According to the results obtained, a decrease in the noise level was determined, especially with the increasing diameter ratio. With an increase in diameter ratio, noise levels decreased in the range of 15%-26% for all cases. The results are recommendations for researchers in reducing the noise level depending on the design of the cavity geometries used in practice.

References

  • ANSYS, 2009, ANSYS–FLUENT 12.0, Theory Guide, Section 22.3.
  • Chen, H., Zhong, Q., Wang, X., Li, D., 2014, “Reynolds number dependence of flow past a shallow open cavity“, Science China Technological Sciences, 57(11), 2161-2171.
  • Horváth, C., Vad, J., 2009, “Broadband noise source model acoustical investigation on unskewed and skewed axial flow fan cascades“.
  • Kim, H., Hu, Z., Thompson, D., 2020, “Effect of cavity flow control on high-speed train pantograph and roof aerodynamic noise“, Railway Engineering Science, 28(1), 54-74.
  • Krishnamurty, K., 1955, “Acoustic radiation from two-dimensional rectangular cutouts in aerodynamic surfaces“ (No. NACA-TN-3487).
  • Malhotra, A., Vaidyanathan, A., 2016, “Aft wall offset effects on open cavities in confined supersonic flow“, Experimental Thermal and Fluid Science, 74, 411-428.
  • Mancini, S., Kolb, A., Gonzalez-Martino, I., Casalino, D., 2019, “Effects of wall modifications on pressure oscillations in high-subsonic and supersonic flows over rectangular cavities“, In 25th AIAA/CEAS Aeroacoustics Conference, (p. 2692).
  • Menter, F.R., 1994, “Two-equation eddy-viscosity turbulence models for engineering applications“, AIAA journal, Cilt 32, Sayı 8, ss. 1598-605.
  • Mohamud, O. M., Johnson, P., 2006, “Broadband noise source models as aeroacoustic tools in designing low NVH HVAC ducts“, SAE Technical Paper, No. 2006-01-1192.
  • Noger, C., Patrat, J. C., Peube, J., Peube, J. L., 2000, “Aeroacoustical study of the TGV pantograph recess“ Journal of Sound and Vibration, 231(3), 563-575.
  • Özsoy, E., Rambaud, P., Stitou, A., Riethmuller, M. L., 2005, “Vortex characteristics in laminar cavity flow at very low Mach number“, Experiments in fluids, 38(2), 133-145.
  • Özsoy, E., Aslan, A. R., 2011 “Üç boyutlu bir kavite üzerindeki sıkıştırılamaz akışın sayısal bir yöntemle analizi“. İTÜDERGİSİ/d, 10(3).
  • Özsoy, E., 2010, “Numerical simulation of incompressible flow over a three dimensional rectangular cavity“, Doctoral dissertation.
  • Proudman, I., 1952, “The generation of noise by isotropic turbulence“, Proceedings of the Royal Society of London, Series A. Mathematical and Physical Sciences, 214(1116), 119-132.
  • Rockwell, D., Naudascher, E., 1978, “Self-sustaining oscillations of flow past cavities“, 152-165.
  • Sciacchitano, A., Arpino, F., Cortellessa, G., 2021, “Benchmark PIV database for the validation of CFD simulations in a transitional cavity flow“, International Journal of Heat and Fluid Flow, 90, 108831.
  • Vikramaditya, N. S., Kurian, J., 2009, “Pressure oscillations from cavities with ramp“, AIAA journal, 47(12), 2974-2984.
  • Wang, Y., Lee, H. C., Li, K. M., Gu, Z., Chen, J., 2012, “Experimental and numerical study of flow over a cavity for reduction of buffeting noise“, Acta Acustica united with Acustica, 98(4), 600-610.
  • Zhang, X., Rona, A., Edwards, J. A., 1998, “The effect of trailing edge geometry on cavity flow oscillation driven by a supersonic shear layer“, The Aeronautical Journal, 102(1013), 129-136.
  • Zhang, X., Chen, X. X., Rona, A., Edwards, J. A., 1999, “Attenuation of cavity flow oscillation through leading edge flow control“, Journal of Sound and Vibration, 221(1), 23-47.
  • Zhang, L., Wang, R., Wang, S., 2014, “Simulation of broadband noise sources of an axial fan under rotating stall conditions“, Advances in Mechanical Engineering, 6, 507079.

KAVİTE ÇIKIŞ KENARININ GÜRÜLTÜ SEVİYESİNE ETKİSİNİN ARAŞTIRILMASI

Year 2022, Volume: 10 Issue: 3, 719 - 731, 01.09.2022
https://doi.org/10.36306/konjes.1107037

Abstract

Çalışmada, dikdörtgen kesitli kavite içinde akan akış nedeniyle oluşan gürültü seviyesi ve kavite etrafındaki akış yapıları sayısal olarak incelenmiştir. Araştırma bulgularına göre kavite kesitinde değişiklikler yapılarak gürültü seviyesinin azaltılması amaçlanmıştır. Öncelikle, dikdörtgen kesitli kavite uygulaması için sayısal analizler yapılarak elde edilen akış yapısı sonuçları literatürdeki çalışmalarla doğrulanmıştır. Daha sonra, en yüksek gürültü seviyesinin oluştuğu kavite çıkış kenarı için r/h=0.1, 0.2, 0.5, 0.75 ve 1.0 çap oranlarında beş farklı geometri tasarlanmıştır ve bu geometriler için sonuçları doğrulanan SST k-ω türbülans modeli ile 10-35 m/s hız aralığında sayısal analizler yapılmıştır. Dikdörtgen kesitli ve çıkış kenarı beş farklı çap oranı ile tasarlanmış kavite akış sonuçları görsel ve sayısal veriler halinde sunulmuştur. Elde edilen sonuçlara göre özellikle artan çap oranı ile gürültü seviyesinde azalma tespit edilmiştir. Artan çap oranıyla tüm hızlar için gürültü seviyelerinde en yüksek %26 en düşük %15 oranında azalmalar gözlemlenmiştir. Çalışma sonuçları, uygulamada kullanılan kavite geometrilerinin tasarımına bağlı olarak gürültü seviyesinin azaltılmasında araştırmacılar için yol gösterici nitelikte olacaktır.

References

  • ANSYS, 2009, ANSYS–FLUENT 12.0, Theory Guide, Section 22.3.
  • Chen, H., Zhong, Q., Wang, X., Li, D., 2014, “Reynolds number dependence of flow past a shallow open cavity“, Science China Technological Sciences, 57(11), 2161-2171.
  • Horváth, C., Vad, J., 2009, “Broadband noise source model acoustical investigation on unskewed and skewed axial flow fan cascades“.
  • Kim, H., Hu, Z., Thompson, D., 2020, “Effect of cavity flow control on high-speed train pantograph and roof aerodynamic noise“, Railway Engineering Science, 28(1), 54-74.
  • Krishnamurty, K., 1955, “Acoustic radiation from two-dimensional rectangular cutouts in aerodynamic surfaces“ (No. NACA-TN-3487).
  • Malhotra, A., Vaidyanathan, A., 2016, “Aft wall offset effects on open cavities in confined supersonic flow“, Experimental Thermal and Fluid Science, 74, 411-428.
  • Mancini, S., Kolb, A., Gonzalez-Martino, I., Casalino, D., 2019, “Effects of wall modifications on pressure oscillations in high-subsonic and supersonic flows over rectangular cavities“, In 25th AIAA/CEAS Aeroacoustics Conference, (p. 2692).
  • Menter, F.R., 1994, “Two-equation eddy-viscosity turbulence models for engineering applications“, AIAA journal, Cilt 32, Sayı 8, ss. 1598-605.
  • Mohamud, O. M., Johnson, P., 2006, “Broadband noise source models as aeroacoustic tools in designing low NVH HVAC ducts“, SAE Technical Paper, No. 2006-01-1192.
  • Noger, C., Patrat, J. C., Peube, J., Peube, J. L., 2000, “Aeroacoustical study of the TGV pantograph recess“ Journal of Sound and Vibration, 231(3), 563-575.
  • Özsoy, E., Rambaud, P., Stitou, A., Riethmuller, M. L., 2005, “Vortex characteristics in laminar cavity flow at very low Mach number“, Experiments in fluids, 38(2), 133-145.
  • Özsoy, E., Aslan, A. R., 2011 “Üç boyutlu bir kavite üzerindeki sıkıştırılamaz akışın sayısal bir yöntemle analizi“. İTÜDERGİSİ/d, 10(3).
  • Özsoy, E., 2010, “Numerical simulation of incompressible flow over a three dimensional rectangular cavity“, Doctoral dissertation.
  • Proudman, I., 1952, “The generation of noise by isotropic turbulence“, Proceedings of the Royal Society of London, Series A. Mathematical and Physical Sciences, 214(1116), 119-132.
  • Rockwell, D., Naudascher, E., 1978, “Self-sustaining oscillations of flow past cavities“, 152-165.
  • Sciacchitano, A., Arpino, F., Cortellessa, G., 2021, “Benchmark PIV database for the validation of CFD simulations in a transitional cavity flow“, International Journal of Heat and Fluid Flow, 90, 108831.
  • Vikramaditya, N. S., Kurian, J., 2009, “Pressure oscillations from cavities with ramp“, AIAA journal, 47(12), 2974-2984.
  • Wang, Y., Lee, H. C., Li, K. M., Gu, Z., Chen, J., 2012, “Experimental and numerical study of flow over a cavity for reduction of buffeting noise“, Acta Acustica united with Acustica, 98(4), 600-610.
  • Zhang, X., Rona, A., Edwards, J. A., 1998, “The effect of trailing edge geometry on cavity flow oscillation driven by a supersonic shear layer“, The Aeronautical Journal, 102(1013), 129-136.
  • Zhang, X., Chen, X. X., Rona, A., Edwards, J. A., 1999, “Attenuation of cavity flow oscillation through leading edge flow control“, Journal of Sound and Vibration, 221(1), 23-47.
  • Zhang, L., Wang, R., Wang, S., 2014, “Simulation of broadband noise sources of an axial fan under rotating stall conditions“, Advances in Mechanical Engineering, 6, 507079.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Sercan Yağmur 0000-0002-5478-5451

Sercan Doğan 0000-0002-8665-8924

Publication Date September 1, 2022
Submission Date April 21, 2022
Acceptance Date July 27, 2022
Published in Issue Year 2022 Volume: 10 Issue: 3

Cite

IEEE S. Yağmur and S. Doğan, “KAVİTE ÇIKIŞ KENARININ GÜRÜLTÜ SEVİYESİNE ETKİSİNİN ARAŞTIRILMASI”, KONJES, vol. 10, no. 3, pp. 719–731, 2022, doi: 10.36306/konjes.1107037.