Araştırma Makalesi
BibTex RIS Kaynak Göster

İskenderun Bölgesi İçin Tasarlanan Güneş Baca Santrali Sayısal İncelemesi

Yıl 2022, Cilt: 10 Sayı: 3, 548 - 562, 01.09.2022
https://doi.org/10.36306/konjes.1107094

Öz

Günümüzde enerji, ekonomik gelişmişliğin en önemli göstergesi olarak kabul edilmektedir. Ancak fosil yakıtların enerji kaynağı olarak kullanılması ozon tabakasının incelmesi, küresel ısınma ve iklim değişikliğine neden olmaktadır. Bu nedenle sürdürülebilir enerji olarak adlandırılan yenilenebilir enerji sistemlerinin kullanılması hem fosil yakıt tüketimini en aza indirmek hem de çevrenin insan sağlığına etkileri açısından dikkate değer bir adımdır. Bu çalışmada yenilenebilir enerji kaynaklarından güneş enerjisi destekli elektrik üretim sistemlerinden biri olan güneş bacaları incelenmiştir. Hatay ili İskenderun bölgesinin çevre koşulları dikkate alınarak güneş bacalı elektrik santrali (SCPP) projelendirilmiştir. Tesis kollektör, baca, türbin ve jeneratörden oluşmaktadır. Şeffaf kollektörden güneş bacasına giren güneş ışınları havayı ısıtmaktadır. Isınan hava, basınç farkının etkisiyle güneş bacasını terk etmektedir. Türbin, hava hızının yüksek olduğu baca bölümüne yerleştirilmektedir. Türbinden elde edilen mekanik güç, jeneratör vasıtasıyla elektrik enerjisine dönüştürülmektedir. Sistemin enerji kaynağı güneş, sistemin çalışma akışkanı ise havadır. Hesaplamalarda İskenderun bölgesinin ortalama ışınım değeri kullanılmış ve bu değerler kullanılarak tasarlanan SCPP'nin optimizasyonu yapılmıştır. İskenderun bölgesi için tasarlanan SCPP'nin optimizasyonu sayısal analiz programları kullanılarak gerçekleştirilmektedir.

Kaynakça

  • Al-Kayiem, H. H., Aurybi, M. A., Gilani, S. I., Ismaeel, A. A., & Mohammad, S. T. (2019). Performance evaluation of hybrid solar chimney for uninterrupted power generation. Energy, 166, 490-505.
  • Cable, M. (2009). An evaluation of turbulence models for the numerical study of forced and natural convective flow in Atria (Doctoral dissertation, Queen's University), 25-38.
  • Das, P., & Chandramohan, V. P. (2019). Computational study on the effect of collector cover inclination angle, absorber plate diameter and chimney height on flow and performance parameters of solar updraft tower (SUT) plant. Energy, 172, 366-379.
  • Das, P., & Chandramohan, V. P. (2020). 3D numerical study on estimating flow and performance parameters of solar updraft tower (SUT) plant: Impact of divergent angle of chimney, ambient temperature, solar flux and turbine efficiency. Journal of Cleaner Production, 256, 120353.
  • Haaf, W., Friedrich, K., Mayr, G., & Schlaich, J. (1983). Solar chimneys part I: principle and construction of the pilot plant in Manzanares. International Journal of Solar Energy, 2(1), 3-20.
  • Karami, S., Roghabadi, F. A., Maleki, M., Ahmadi, V., & Sadrameli, S. M. (2021). Materials and structures engineering of sun-light absorbers for efficient direct solar steam generation. Solar Energy, 225, 747-772.
  • Kebabsa, H., Lounici, M. S., Lebbi, M., & Daimallah, A. (2020). Thermo-hydrodynamic behavior of an innovative solar chimney. Renewable Energy, 145, 2074-2090.
  • Koç, A., Yağlı, H., Bilgic, H. H., Koç, Y., & Özdemir, A. (2020). Performance analysis of a novel organic fluid filled regenerative heat exchanger used heat recovery ventilation (OHeX-HRV) system. Sustainable Energy Technologies and Assessments, 41, 100787.
  • Mert, İ., Bilgic, H. H., Yağlı, H., & Koç, Y. (2020). Deep neural network approach to estimation of power production for an organic Rankine cycle system. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(12), 1-16.
  • Nasraoui, H., Driss, Z., & Kchaou, H. (2020). Novel collector design for enhancing the performance of solar chimney power plant. Renewable Energy, 145, 1658-1671.
  • Nassar, Y. F., Abdunnabi, M. J., Sbeta, M. N., Hafez, A. A., Amer, K. A., Ahmed, A. Y., & Belgasim, B. (2021). Dynamic analysis and sizing optimization of a pumped hydroelectric storage-integrated hybrid PV/Wind system: A case study. Energy Conversion and Management, 229, 113744.
  • Roy, D., & Samanta, S. (2021). Development and multiobjective optimization of a novel trigeneration system based on biomass energy. Energy Conversion and Management, 240, 114248.
  • Setia, G. A., Zaen, Z. Z., Haz, F., Iskandar, H. R., Winanti, N., & Hidayat, M. R. (2021, October). Optimization of the Hybrid Power Plant Design (PV-Wind) for Residential Load. In 2021 3rd International Conference on High Voltage Engineering and Power Systems (ICHVEPS) (pp. 227-231). IEEE.
  • Shih, T. H., Liou, W. W., Shabbir, A., Yang, Z., & Zhu, J. (1995). A New Eddy-Viscosity Model for High Reynolds Number Turbulent Flows-Model Development and Validation.-Computers Fluids. 24 (3). 227-238.
  • Singh, A. P., Kumar, A., & Singh, O. P. (2020). Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel. Energy Conversion and Management, 218, 113020.
  • Sivaram, P. M., Mande, A. B., Premalatha, M., & Arunagiri, A. (2020). Investigation on a building-integrated passive solar energy technology for air ventilation, clean water and power. Energy Conversion and Management, 211, 112739.
  • Tan, J. D., Chang, C. C. W., Bhuiyan, M. A. S., Nisa’Minhad, K., & Ali, K. (2022). Advancements of wind energy conversion systems for low-wind urban environments: A review. Energy Reports, 8, 3406-3414.
  • Xu, Y., & Zhou, X. (2018). Performance of divergent-chimney solar power plants. Solar Energy, 170, 379-387.
  • Zuo, L., Liu, Z., Ding, L., Qu, N., Dai, P., Xu, B., & Yuan, Y. (2020). Performance analysis of a wind supercharging solar chimney power plant combined with thermal plant for power and freshwater generation. Energy Conversion and Management, 204, 112282.

NUMERICAL EXAMINATION OF A SOLAR CHIMNEY POWER PLANT DESIGNED FOR THE ISKENDERUN REGION

Yıl 2022, Cilt: 10 Sayı: 3, 548 - 562, 01.09.2022
https://doi.org/10.36306/konjes.1107094

Öz

Today, energy is accepted as the most indicator of economic development. However, the use of fossil fuels as energy sources is caused the depletion of the ozone layer, global warming and climate change. Therefore, using renewable energy systems called sustainable energy is a remarkable step in terms of both minimizing fossil fuel consumption and the effects of the environment on human health. In this study, solar chimneys, one of the solar-assisted electricity generation systems among renewable energy sources, are analyzed. A solar chimney power plant (SCPP) has been designed by considering the environmental conditions of the Iskenderun region in Hatay province. The facility consists of collector, chimney, turbine and generator. Sun rays entering the solar chimney from the transparent collector heat the air. The heated air leaves the solar chimney with the effect of the pressure difference. The turbine is placed in the chimney section where the air velocity is high. The mechanical power obtained from the turbine is converted into electrical energy through the generator. The energy source of the system is the sun, and the working fluid of the system is air. In the calculations, the average irradiance value of the Iskenderun region was used and optimization of the designed SCPP was made using these values. The optimization of the SCPP designed for the Iskenderun region is performed using numerical analysis programs.

Kaynakça

  • Al-Kayiem, H. H., Aurybi, M. A., Gilani, S. I., Ismaeel, A. A., & Mohammad, S. T. (2019). Performance evaluation of hybrid solar chimney for uninterrupted power generation. Energy, 166, 490-505.
  • Cable, M. (2009). An evaluation of turbulence models for the numerical study of forced and natural convective flow in Atria (Doctoral dissertation, Queen's University), 25-38.
  • Das, P., & Chandramohan, V. P. (2019). Computational study on the effect of collector cover inclination angle, absorber plate diameter and chimney height on flow and performance parameters of solar updraft tower (SUT) plant. Energy, 172, 366-379.
  • Das, P., & Chandramohan, V. P. (2020). 3D numerical study on estimating flow and performance parameters of solar updraft tower (SUT) plant: Impact of divergent angle of chimney, ambient temperature, solar flux and turbine efficiency. Journal of Cleaner Production, 256, 120353.
  • Haaf, W., Friedrich, K., Mayr, G., & Schlaich, J. (1983). Solar chimneys part I: principle and construction of the pilot plant in Manzanares. International Journal of Solar Energy, 2(1), 3-20.
  • Karami, S., Roghabadi, F. A., Maleki, M., Ahmadi, V., & Sadrameli, S. M. (2021). Materials and structures engineering of sun-light absorbers for efficient direct solar steam generation. Solar Energy, 225, 747-772.
  • Kebabsa, H., Lounici, M. S., Lebbi, M., & Daimallah, A. (2020). Thermo-hydrodynamic behavior of an innovative solar chimney. Renewable Energy, 145, 2074-2090.
  • Koç, A., Yağlı, H., Bilgic, H. H., Koç, Y., & Özdemir, A. (2020). Performance analysis of a novel organic fluid filled regenerative heat exchanger used heat recovery ventilation (OHeX-HRV) system. Sustainable Energy Technologies and Assessments, 41, 100787.
  • Mert, İ., Bilgic, H. H., Yağlı, H., & Koç, Y. (2020). Deep neural network approach to estimation of power production for an organic Rankine cycle system. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(12), 1-16.
  • Nasraoui, H., Driss, Z., & Kchaou, H. (2020). Novel collector design for enhancing the performance of solar chimney power plant. Renewable Energy, 145, 1658-1671.
  • Nassar, Y. F., Abdunnabi, M. J., Sbeta, M. N., Hafez, A. A., Amer, K. A., Ahmed, A. Y., & Belgasim, B. (2021). Dynamic analysis and sizing optimization of a pumped hydroelectric storage-integrated hybrid PV/Wind system: A case study. Energy Conversion and Management, 229, 113744.
  • Roy, D., & Samanta, S. (2021). Development and multiobjective optimization of a novel trigeneration system based on biomass energy. Energy Conversion and Management, 240, 114248.
  • Setia, G. A., Zaen, Z. Z., Haz, F., Iskandar, H. R., Winanti, N., & Hidayat, M. R. (2021, October). Optimization of the Hybrid Power Plant Design (PV-Wind) for Residential Load. In 2021 3rd International Conference on High Voltage Engineering and Power Systems (ICHVEPS) (pp. 227-231). IEEE.
  • Shih, T. H., Liou, W. W., Shabbir, A., Yang, Z., & Zhu, J. (1995). A New Eddy-Viscosity Model for High Reynolds Number Turbulent Flows-Model Development and Validation.-Computers Fluids. 24 (3). 227-238.
  • Singh, A. P., Kumar, A., & Singh, O. P. (2020). Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel. Energy Conversion and Management, 218, 113020.
  • Sivaram, P. M., Mande, A. B., Premalatha, M., & Arunagiri, A. (2020). Investigation on a building-integrated passive solar energy technology for air ventilation, clean water and power. Energy Conversion and Management, 211, 112739.
  • Tan, J. D., Chang, C. C. W., Bhuiyan, M. A. S., Nisa’Minhad, K., & Ali, K. (2022). Advancements of wind energy conversion systems for low-wind urban environments: A review. Energy Reports, 8, 3406-3414.
  • Xu, Y., & Zhou, X. (2018). Performance of divergent-chimney solar power plants. Solar Energy, 170, 379-387.
  • Zuo, L., Liu, Z., Ding, L., Qu, N., Dai, P., Xu, B., & Yuan, Y. (2020). Performance analysis of a wind supercharging solar chimney power plant combined with thermal plant for power and freshwater generation. Energy Conversion and Management, 204, 112282.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Mustafa Önal 0000-0002-4238-6947

Ali Koç 0000-0002-7388-2628

Özkan Köse 0000-0002-9069-1989

Yıldız Koç 0000-0002-2219-645X

Hüseyin Yağlı 0000-0002-9777-0698

Yayımlanma Tarihi 1 Eylül 2022
Gönderilme Tarihi 21 Nisan 2022
Kabul Tarihi 14 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 10 Sayı: 3

Kaynak Göster

IEEE M. Önal, A. Koç, Ö. Köse, Y. Koç, ve H. Yağlı, “NUMERICAL EXAMINATION OF A SOLAR CHIMNEY POWER PLANT DESIGNED FOR THE ISKENDERUN REGION”, KONJES, c. 10, sy. 3, ss. 548–562, 2022, doi: 10.36306/konjes.1107094.