Research Article
BibTex RIS Cite

Single Point Positioning Software with GNSS Code (Pseudorange) Observations: KTUN_SPP

Year 2022, Volume: 10 Issue: 3, 578 - 598, 01.09.2022
https://doi.org/10.36306/konjes.1112955

Abstract

Nowadays, positioning application with single-frequency GNSS receivers is heavily preferred in many areas such as defense industry, navigation devices, smart personal devices, etc. On the other hand, multi-frequency receivers and phase observations are generally preferred in engineering applications that require high accuracy such as cartography, earthquake prediction and deformation analysis studies, numerical weather forecasting, etc. Therefore, today, smart phones, smart watches or any location-based real-time navigation services are equipped with low-cost receivers. In this context, it has become very important to improve the accuracy obtained from the Single Point Positioning (SPP) technique, where civilian (C/A: Coarse Acquisition) code observations are used.
Due to the increasing use of single point positioning using single-frequency code observations, a GPS+Galileo-enabled software named KTUN_SPP (Konya Technical University_Single Point Positioning) has been prepared within the scope of a master's thesis that forms the basis of this article.
Within the scope of the software, the accuracies that can be obtained by single point positioning were investigated by using C1 code observations at L1 and E1 frequencies of GPS and Galileo satellites. In addition, a user-friendly interface is designed to provide the user with the opportunity to perform any computation scenarios they wish. In order to test the performance of the KTUN_SPP software, GPS, Galileo and GPS+Galileo SPP scenarios were applied using 24-hour data sets from 7 IGS stations. And the results were compared with the results obtained from the "CenterPoint RTX Post-Processing" service used for real-time location determination on a global scale.

References

  • Ayso, E., 2021, GPS L1-C1 ve Galileo E1-C1 Gözlemleri Kullanılarak Üç Boyutlu Konum Belirlenmesi Üzerine Araştırma, Yüksek Lisans Tezi, Konya Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, Konya.
  • Cai, C., Gao, Y., Pan, L. and Dai, W., 2014, “An analysis on combined GPS/COMPASS data quality and its effect on single point positioning accuracy under different observing conditions”, Advances in Space Research, Cilt 54, Sayı 5, ss. 818–29.
  • Galileo OS SIS ICD-2021, "Galileo Open Service, Signal in Space Interface Control Document", European Space Agency.
  • Galileo, Galileo System, Service and Status, https://www.gsc-europa.eu/system-service-status/constellation-information, ziyaret tarihi: 28 Nisan 2022.
  • GPS, GPS Space Segment, https://www.gps.gov/systems/gps/space/, ziyaret tarihi: 28 Nisan 2022.
  • Guan Q., Fan C., Chen G., Chen C., 2021, “Performance Evaluation of BDS/GPS Combined Single Point Positioning with Low-cost Single-Frequency Receiver”, Journal of the Indian Society of Remote Sensing, Cilt 49, Sayı 11, ss. 2847–2861.
  • Hobiger, T., and Jakowski, N., 2017, “Atmospheric signal propagation”, Springer handbook of global navigation satellite systems, Editör: Teunissen, P.J.G., Montenbruck O., Springer, Cham, 165-193.
  • Hofmann-Wellenhof, B., Lichtenegger, H., Wasle, E., 2008, GNSS–Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and more, Springer Science & Business Media, New York.
  • Hopfield, H., 1969, “Two‐quartic tropospheric refractivity profile for correcting satellite data”, Journal of Geophysical research, Cilt 74, Sayı 18, ss. 4487-4499.
  • International GNSS Service (IGS), https://igs.org/products/, ziyaret tarihi: 28 Nisan 2022.
  • Kahveci, M., 2017, Kinematik GNSS ve RTK CORS Ağları, 2.basım, Nobel Yayıncılık, Ankara.
  • Kahveci, M., Alioğlu, D., Çetin G., 2021, “Tek Frekanslı GNSS Alıcılarında Kullanılan İyonosferik Etki Düzeltme Modellerinin Karşılaştırılması”, Konya Mühendislik Bilimleri Dergisi, Cilt 9, Sayı 2, ss. 428-441.
  • Kahveci, M., Yıldız, F., 2022, Uydularla Konum Belirleme Sistemleri (GNSS): Teori ve Uygulama, 11. basım, Nobel Yayıncılık, Ankara.
  • Karaim, M., Elsheikh, M., Noureldin, A., Rustamov, R., 2018, “GNSS Error Sources”, Multifunctional Operation and Application of GPS, Rustamov, R., Hashimov A.M., IntechOpen, 69-85.
  • Kırtıl, S., 2022, GNSS Konum Belirlemede Troposferik Etki Hesaplama Modelleri Üzerine Araştırma, Yüksek Lisans Tezi, Konya Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, Konya.
  • Klobuchar, J.A., 1987, “Ionospheric time-delay algorithm for single-frequency GPS users”, IEEE Transactions on aerospace and electronic systems, Cilt AES-23, Sayı 3, ss. 325-331.
  • Mathworks, MATLAB R2020a, https://www.mathworks.com/, ziyaret tarihi: 28 Nisan 2022.
  • Montenbruck, O., Steigenberger, P., Hauschild, A., 2015, “Broadcast versus precise ephemerides: a multi-GNSS perspective”, GPS Solutions Cilt 19, Sayı 2, ss. 321–333.
  • Nava, B., Coisson, P., Radicella, S., 2008, “A new version of the NeQuick ionosphere electron density model”, Journal of Atmospheric and Solar-Terrestrial Physics, Cilt 70, Sayı 15, ss. 1856-1862.
  • Niell, A.E., 1996, “Global mapping functions for the atmosphere delay at radio wavelengths”, Journal of geophysical research: solid earth, Cilt 101, Sayı B2, ss. 3227-3246.
  • Oladipo, O. A., Schüler, T., 2012, “GNSS single frequency ionospheric range delay corrections: NeQuick data ingestion technique”, Advances in Space Research, Cilt 50, Sayı 9, ss. 1204–1212.
  • Pan, L., Cai, C., Santerre, R., Zhang, X., 2016, “Performance evaluation of single-frequency point positioning with GPS, GLONASS, BeiDou and Galileo” Survey Review, Cilt 49, Sayı 354, ss. 197-205.
  • Pan, L., Zhang, Z., Yu, W., Dai, W., 2021, “Intersystem Bias in GPS, GLONASS, Galileo, BDS-3, andBDS-2 Integrated SPP: Characteristics and Performance Enhancement as a Priori Constraints” remote sensing, Cilt 13, ss. 4650.
  • Saastamoinen, J., 1972, “Atmospheric correction for the troposphere and stratosphere in radio ranging satellites”, The use of artificial satellites for geodesy, Cilt 15, ss. 247-251.
  • Seeber, G., 2003, Satellite geodesy: foundations, methods, and applications, Cilt 4, Walter de gruyter, Berlin-New York.
  • Trimble, CenterPoint RTX Post-Processing, https://www.trimblertx.com/UploadForm.aspx, ziyaret tarihi: 14 Nisan 2022.
  • Van Sickle, J., 2008, GPS for land surveyors, Third Edition, Crc Press Taylor & Francis Group, Boca Raton, London, New York.
  • Zhang, Z., Pan, L., 2022, “Current performance of open position service with almost fully deployed multi-GNSS constellations: GPS, GLONASS, Galileo, BDS-2, and BDS-3”, Advances in Space Research, Cilt 69, Sayı 5, ss. 1994-2019.
  • Zumberge, J., Heflin, M., Jefferson, D., Watkins, M., Webb, F., 1997, “Precise point positioning for the efficient and robust analysis of GPS data from large networks”, Journal of geophysical research: solid earth, Cilt 102, Sayı B3, ss. 5005-5017.
  • Xu, G., Xu, Y., 2016, GPS Theory, Algorithms and Applications, Third edition, Springer-Verlag, Berlin Heidelberg.

GNSS KOD (PSEUDORANGE) ÖLÇÜLERİ İLE TEK NOKTA KONUM BELİRLEME YAZILIMI: KTUN_SPP

Year 2022, Volume: 10 Issue: 3, 578 - 598, 01.09.2022
https://doi.org/10.36306/konjes.1112955

Abstract

Günümüzde tek frekanslı GNSS alıcıları ile konum belirleme uygulaması birçok alanda (savunma sanayi, navigasyon cihazları, akıllı kişisel cihazlar vb.) yoğun şekilde tercih edilmektedir. Diğer taraftan, yüksek doğruluk isteyen mühendislik amaçlı uygulamalarda (haritacılık, deprem tahmini ve deformasyon analizi çalışmaları, sayısal hava tahmini vb.) genel olarak çok frekanslı alıcılar ve faz gözlemleri tercih edilmektedir. Dolayısıyla, günümüzde artık akıllı telefonlar, akıllı saatler ya da konum tabanlı her türlü gerçek zamanlı navigasyon hizmetleri düşük maliyetli alıcılarla donatılmaktadır. Bu bağlamda tek frekanslı GNSS alıcılarıyla yalnızca sivil (C/A:Coarse Acquisition) kod gözlemlerinin kullanıldığı Tek Nokta (Mutlak) Konum Belirleme (SPP: Single Point Positioning) tekniğinden elde edilen doğruluğun iyileştirilmesi gerekliliği söz konusu alanlarda oldukça önemli hale gelmiştir.
Tek frekansta kod ölçüleri ile mutlak konum belirleme uygulamalarının gittikçe artan kullanım alanları nedeniyle, bu makalenin temelini oluşturan ve makale yazarına ait bir yüksek lisans tez çalışması kapsamında KTUN_SPP (Konya Teknik Üniversitesi_Tek Nokta Konum Belirleme) isimli GPS+Galileo özellikli bir yazılım hazırlanmıştır. Yazılım kapsamında GPS ve Galileo uydularına ait L1 ve E1 frekanslarındaki C1 kod gözlemleri kullanılarak tek nokta konum belirleme ile elde edilebilecek doğruluklar araştırılmıştır. Ayrıca kullanıcı dostu bir ara yüz tasarlanarak kullanıcıya dilediği hesaplama senaryolarını gerçekleştirebilme olanağı da sunulmaktadır. KTUN_SPP yazılımının performansını test etmek amacıyla 7 adet IGS istasyonuna ait 24 saatlik veri setleri kullanılarak GPS, Galileo ve GPS+Galileo SPP senaryoları oluşturulmuş, elde edilen sonuçlar global ölçekte gerçek zamanlı konum belirleme için kullanılan “CenterPoint RTX Post-Processing” hizmetinden elde edilen sonuçlarla karşılaştırılmıştır. 

References

  • Ayso, E., 2021, GPS L1-C1 ve Galileo E1-C1 Gözlemleri Kullanılarak Üç Boyutlu Konum Belirlenmesi Üzerine Araştırma, Yüksek Lisans Tezi, Konya Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, Konya.
  • Cai, C., Gao, Y., Pan, L. and Dai, W., 2014, “An analysis on combined GPS/COMPASS data quality and its effect on single point positioning accuracy under different observing conditions”, Advances in Space Research, Cilt 54, Sayı 5, ss. 818–29.
  • Galileo OS SIS ICD-2021, "Galileo Open Service, Signal in Space Interface Control Document", European Space Agency.
  • Galileo, Galileo System, Service and Status, https://www.gsc-europa.eu/system-service-status/constellation-information, ziyaret tarihi: 28 Nisan 2022.
  • GPS, GPS Space Segment, https://www.gps.gov/systems/gps/space/, ziyaret tarihi: 28 Nisan 2022.
  • Guan Q., Fan C., Chen G., Chen C., 2021, “Performance Evaluation of BDS/GPS Combined Single Point Positioning with Low-cost Single-Frequency Receiver”, Journal of the Indian Society of Remote Sensing, Cilt 49, Sayı 11, ss. 2847–2861.
  • Hobiger, T., and Jakowski, N., 2017, “Atmospheric signal propagation”, Springer handbook of global navigation satellite systems, Editör: Teunissen, P.J.G., Montenbruck O., Springer, Cham, 165-193.
  • Hofmann-Wellenhof, B., Lichtenegger, H., Wasle, E., 2008, GNSS–Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and more, Springer Science & Business Media, New York.
  • Hopfield, H., 1969, “Two‐quartic tropospheric refractivity profile for correcting satellite data”, Journal of Geophysical research, Cilt 74, Sayı 18, ss. 4487-4499.
  • International GNSS Service (IGS), https://igs.org/products/, ziyaret tarihi: 28 Nisan 2022.
  • Kahveci, M., 2017, Kinematik GNSS ve RTK CORS Ağları, 2.basım, Nobel Yayıncılık, Ankara.
  • Kahveci, M., Alioğlu, D., Çetin G., 2021, “Tek Frekanslı GNSS Alıcılarında Kullanılan İyonosferik Etki Düzeltme Modellerinin Karşılaştırılması”, Konya Mühendislik Bilimleri Dergisi, Cilt 9, Sayı 2, ss. 428-441.
  • Kahveci, M., Yıldız, F., 2022, Uydularla Konum Belirleme Sistemleri (GNSS): Teori ve Uygulama, 11. basım, Nobel Yayıncılık, Ankara.
  • Karaim, M., Elsheikh, M., Noureldin, A., Rustamov, R., 2018, “GNSS Error Sources”, Multifunctional Operation and Application of GPS, Rustamov, R., Hashimov A.M., IntechOpen, 69-85.
  • Kırtıl, S., 2022, GNSS Konum Belirlemede Troposferik Etki Hesaplama Modelleri Üzerine Araştırma, Yüksek Lisans Tezi, Konya Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, Konya.
  • Klobuchar, J.A., 1987, “Ionospheric time-delay algorithm for single-frequency GPS users”, IEEE Transactions on aerospace and electronic systems, Cilt AES-23, Sayı 3, ss. 325-331.
  • Mathworks, MATLAB R2020a, https://www.mathworks.com/, ziyaret tarihi: 28 Nisan 2022.
  • Montenbruck, O., Steigenberger, P., Hauschild, A., 2015, “Broadcast versus precise ephemerides: a multi-GNSS perspective”, GPS Solutions Cilt 19, Sayı 2, ss. 321–333.
  • Nava, B., Coisson, P., Radicella, S., 2008, “A new version of the NeQuick ionosphere electron density model”, Journal of Atmospheric and Solar-Terrestrial Physics, Cilt 70, Sayı 15, ss. 1856-1862.
  • Niell, A.E., 1996, “Global mapping functions for the atmosphere delay at radio wavelengths”, Journal of geophysical research: solid earth, Cilt 101, Sayı B2, ss. 3227-3246.
  • Oladipo, O. A., Schüler, T., 2012, “GNSS single frequency ionospheric range delay corrections: NeQuick data ingestion technique”, Advances in Space Research, Cilt 50, Sayı 9, ss. 1204–1212.
  • Pan, L., Cai, C., Santerre, R., Zhang, X., 2016, “Performance evaluation of single-frequency point positioning with GPS, GLONASS, BeiDou and Galileo” Survey Review, Cilt 49, Sayı 354, ss. 197-205.
  • Pan, L., Zhang, Z., Yu, W., Dai, W., 2021, “Intersystem Bias in GPS, GLONASS, Galileo, BDS-3, andBDS-2 Integrated SPP: Characteristics and Performance Enhancement as a Priori Constraints” remote sensing, Cilt 13, ss. 4650.
  • Saastamoinen, J., 1972, “Atmospheric correction for the troposphere and stratosphere in radio ranging satellites”, The use of artificial satellites for geodesy, Cilt 15, ss. 247-251.
  • Seeber, G., 2003, Satellite geodesy: foundations, methods, and applications, Cilt 4, Walter de gruyter, Berlin-New York.
  • Trimble, CenterPoint RTX Post-Processing, https://www.trimblertx.com/UploadForm.aspx, ziyaret tarihi: 14 Nisan 2022.
  • Van Sickle, J., 2008, GPS for land surveyors, Third Edition, Crc Press Taylor & Francis Group, Boca Raton, London, New York.
  • Zhang, Z., Pan, L., 2022, “Current performance of open position service with almost fully deployed multi-GNSS constellations: GPS, GLONASS, Galileo, BDS-2, and BDS-3”, Advances in Space Research, Cilt 69, Sayı 5, ss. 1994-2019.
  • Zumberge, J., Heflin, M., Jefferson, D., Watkins, M., Webb, F., 1997, “Precise point positioning for the efficient and robust analysis of GPS data from large networks”, Journal of geophysical research: solid earth, Cilt 102, Sayı B3, ss. 5005-5017.
  • Xu, G., Xu, Y., 2016, GPS Theory, Algorithms and Applications, Third edition, Springer-Verlag, Berlin Heidelberg.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Emre Ayso 0000-0002-8775-3149

Muzaffer Kahveci 0000-0001-5380-7164

Publication Date September 1, 2022
Submission Date May 7, 2022
Acceptance Date June 27, 2022
Published in Issue Year 2022 Volume: 10 Issue: 3

Cite

IEEE E. Ayso and M. Kahveci, “GNSS KOD (PSEUDORANGE) ÖLÇÜLERİ İLE TEK NOKTA KONUM BELİRLEME YAZILIMI: KTUN_SPP”, KONJES, vol. 10, no. 3, pp. 578–598, 2022, doi: 10.36306/konjes.1112955.