Research Article
BibTex RIS Cite

Synthesis and Characterization of Ni-FeNi3-Fe3O4 Metallic Nanoalloys by Hydrothermal Method

Year 2022, Volume: 10 Issue: 4, 965 - 975, 03.12.2022
https://doi.org/10.36306/konjes.1148331

Abstract

In this study, Ni-FeNi3-Fe3O4 metallic nanoalloys were successfully synthesized using the hydrothermal method at 180 °C for 2 hours. The structural and morphological properties of the synthesized metallic nanoalloys were characterized using X-ray diffraction (XRD), Fourier Transform Infrared Spectrophotometer (FTIR) and Scanning Electron Microscopy (SEM). When the diffraction patterns obtained from XRD analysis, it was determined that the high intensity peaks belonged to FeNi3 with cubic crystal structure and metallic Ni. It has been shown that the peaks obtained at lower intensity belong to the Fe3O4 structure. As a result of the FTIR analysis, the peaks obtained at 455.2 and 570.9 cm-1 were shown to be characteristic peaks of Fe-Ni and Fe-O bonds, respectively. SEM-EDS images showed that the synthesized metallic nanoalloys spherical particles with an average radius of 3.51 μm were the metallic Ni phase and the surfaces were covered with some FeNi3. It was determined that irregular shaped nanoparticles with an average radius of 63.33 nm were in FeNi3 structure together with Fe3O4.

References

  • Baylan, E. ve Yildirim, O. A., 2019, Highly efficient photocatalytic activity of stable manganese-doped zinc oxide (Mn: ZnO) nanofibers via electrospinning method, Materials Science in Semiconductor Processing, 103, 104621.
  • Biffis, A., Orlandi, N. ve Corain, B., 2003, Microgel‐stabilized metal nanoclusters: Size control by microgel nanomorphology, Advanced materials, 15 (18), 1551-1555.
  • Bouremana, A., Guittoum, A., Hemmous, M., Rahal, B., Sunol, J., Martínez-Blanco, D., Blanco, J., Gorria, P. ve Benrekaa, N., 2014, Crystal structure, microstructure and magnetic properties of Ni nanoparticles elaborated by hydrothermal route, Journal of Magnetism and Magnetic Materials, 358, 11-15.
  • Bouremana, A., Guittoum, A., Hemmous, M., Martínez-Blanco, D., Gorria, P., Blanco, J. ve Benrekaa, N., 2015, Microstructure, morphology and magnetic properties of Ni nanoparticles synthesized by hydrothermal method, Materials Chemistry and Physics, 160, 435-439.
  • Bouremana, A., Guittoum, A., Hemmous, M., Martínez-Blanco, D., Gorria, P. ve Blanco, J., 2018, Low temperature hydrothermal synthesis of Ni75Fe25 nanostructured powders: Microstructure, morphology and magnetic behaviour, Journal of Magnetism and Magnetic Materials, 466, 212-218.
  • Chen, H., Xu, C., Zhao, G. ve Liu, Y., 2013, Template-free formation of urchin-like FeNi3 microstructures by hydrothermal reduction, Materials Letters, 91, 75-77.
  • Chen, Y.-C., Zheng, F.-C., Min, Y.-L., Wang, T. ve Zhao, Y.-G., 2012, Synthesis and properties of magnetic FeNi3 alloyed microchains obtained by hydrothermal reduction, Solid state sciences, 14 (7), 809-813.
  • Chen, Y., Luo, X., Yue, G.-H., Luo, X. ve Peng, D.-L., 2009, Synthesis of iron–nickel nanoparticles via a nonaqueous organometallic route, Materials Chemistry and Physics, 113 (1), 412-416.
  • Chicinas, I., Geoffroy, O., Isnard, O. ve Pop, V., 2005, Soft magnetic composite based on mechanically alloyed nanocrystalline Ni3Fe phase, Journal of Magnetism and Magnetic Materials, 290, 1531-1534.
  • Chicinaş, I., Pop, V., Isnard, O., Le Breton, J. ve Juraszek, J., 2003, Synthesis and magnetic properties of Ni3Fe intermetallic compound obtained by mechanical alloying, Journal of alloys and compounds, 352 (1-2), 34-40.
  • Datta, A., Pal, M., Chakravorty, D., Das, D. ve Chintalapudi, S., 1999, Disorder in nanocrystalline Ni3Fe, Journal of Magnetism and Magnetic Materials, 205 (2-3), 301-306.
  • Ding, J., Sun, Q., Zhong, L., Wang, X., Chai, L., Li, Q., Li, T.-T., Hu, Y., Qian, J. ve Huang, S., 2020, Thermal conversion of hollow nickel-organic framework into bimetallic FeNi3 alloy embedded in carbon materials as efficient oer electrocatalyst, Electrochimica Acta, 354, 136716.
  • Djekoun, A., Boudinar, N., Chebli, A., Otmani, A., Benabdeslem, M., Bouzabata, B. ve Greneche, J., 2009, Structure and magnetic properties of Fe-rich nanostructured Fe100− XNiX powders obtained by mechanical alloying, Physics Procedia, 2 (3), 693-700.
  • Eroglu, S., Zhang, S. ve Messing, G., 1996, Synthesis of nanocrystalline Ni–Fe alloy powders by spray pyrolysis, Journal of materials research, 11 (9), 2131-2134.
  • Estrader, M., López-Ortega, A., Estradé, S., Golosovsky, I. V., Salazar-Alvarez, G., Vasilakaki, M., Trohidou, K., Varela, M., Stanley, D. ve Sinko, M., 2013, Robust antiferromagnetic coupling in hard-soft bi-magnetic core/shell nanoparticles, Nature communications, 4 (1), 1-8.
  • Fernández-García, M. P., Gorria, P., Blanco, J. A., Fuertes, A. B., Sevilla, M., Boada, R., Chaboy, J., Schmool, D. ve Grenèche, J.-M., 2010, Microstructure and magnetism of nanoparticles with γ-Fe core surrounded by α-Fe and iron oxide shells, Physical Review B, 81 (9), 094418.
  • Fernández-García, M. P., Gorria, P., Sevilla, M., Proenca, M. P., Boada, R., Chaboy, J., Fuertes, A. B. ve Blanco, J. A., 2011, Enhanced protection of carbon-encapsulated magnetic nickel nanoparticles through a sucrose-based synthetic strategy, The Journal of Physical Chemistry C, 115 (13), 5294-5300.
  • Golovin, Y. I., Stolyarov, R. ve Shuklinov, A., 2013, Morphology and growth kinetics of Ni nanoparticles on the surface of multiwalled carbon nanotubes at galvanostatic electrodeposition, Technical Physics, 58 (8), 1189-1193.
  • Gong, T. ve Tang, Y., 2020, Preparation of multifunctional nanocomposites Fe3O4@ SiO2–EDTA and its adsorption of heavy metal ions in water solution, Water Science and Technology, 81 (1), 170-177.
  • Guo, H., Li, M., Qin, Z., Li, F., Zhang, X., Wu, W. ve Cheng, H., 2021, Shape-controlled synthesis of flake-like FeNi3 nanoparticles based on sodium lignosulfonate, Advanced Powder Technology, 32 (3), 755-763.
  • Haviv, A. H., Grenèche, J.-M. ve Lellouche, J.-P., 2010, Aggregation control of hydrophilic maghemite (γ-Fe2O3) nanoparticles by surface doping using cerium atoms, Journal of the American Chemical Society, 132 (36), 12519-12521.
  • Hongxia, G., Hua, C., Fan, L., Zhenping, Q., Suping, C. ve Zuoren, N., 2012, Shape-controlled synthesis of FeNi3 nanoparticles by ambient chemical reduction and their magnetic properties, Journal of materials research, 27 (11), 1522-1530.
  • Keles, E., Yildirim, M., Öztürk, T. ve Yildirim, O. A., 2020, Hydrothermally synthesized UV light active zinc stannate: tin oxide (ZTO: SnO2) nanocomposite photocatalysts for photocatalytic applications, Materials Science in Semiconductor Processing, 110, 104959.
  • Khodadadi, M., Panahi, A. H., Al-Musawi, T. J., Ehrampoush, M. ve Mahvi, A., 2019, The catalytic activity of FeNi3@ SiO2 magnetic nanoparticles for the degradation of tetracycline in the heterogeneous Fenton-like treatment method, Journal of Water Process Engineering, 32, 100943.
  • Kim, S.-H., Sohn, H.-J., Joo, Y.-C., Kim, Y.-W., Yim, T.-H., Lee, H.-Y. ve Kang, T., 2005, Effect of saccharin addition on the microstructure of electrodeposited Fe–36 wt.% Ni alloy, Surface and Coatings Technology, 199 (1), 43-48.
  • Liao, Q., Tannenbaum, R. ve Wang, Z. L., 2006, Synthesis of FeNi3 alloyed nanoparticles by hydrothermal reduction, The Journal of Physical Chemistry B, 110 (29), 14262-14265.
  • Liu, J. ve Vipulanandan, C., 2017, Effects of Fe, Ni, and Fe/Ni metallic nanoparticles on power production and biosurfactant production from used vegetable oil in the anode chamber of a microbial fuel cell, Waste Management, 66, 169-177.
  • Liu, L., Guan, J., Shi, W., Sun, Z. ve Zhao, J., 2010, Facile synthesis and growth mechanism of flowerlike Ni− Fe alloy nanostructures, The Journal of Physical Chemistry C, 114 (32), 13565-13570.
  • Liu, Y., Chi, Y., Shan, S., Yin, J., Luo, J. ve Zhong, C.-J., 2014, Characterization of magnetic NiFe nanoparticles with controlled bimetallic composition, Journal of alloys and compounds, 587, 260-266.
  • Mao, Y., Parsons, J. ve McCloy, J. S., 2013, Magnetic properties of double perovskite La 2 BMnO 6 (B= Ni or Co) nanoparticles, Nanoscale, 5 (11), 4720-4728.
  • Moustafa, S. ve Daoush, W., 2007, Synthesis of nano-sized Fe–Ni powder by chemical process for magnetic applications, Journal of materials processing technology, 181 (1-3), 59-63.
  • Nasseh, N., Arghavan, F. S., Rodriguez-Couto, S. ve Hossein Panahi, A., 2020a, Synthesis of FeNi3/SiO2/CuS magnetic nano-composite as a novel adsorbent for Congo Red dye removal, International Journal of Environmental Analytical Chemistry, 1-21.
  • Nasseh, N., Barikbin, B. ve Taghavi, L., 2020b, Photocatalytic degradation of tetracycline hydrochloride by FeNi3/SiO2/CuS magnetic nanocomposite under simulated solar irradiation: Efficiency, stability, kinetic and pathway study, Environmental Technology & Innovation, 20, 101035.
  • Rinaldi-Montes, N., Gorria, P., Martínez-Blanco, D., Fuertes, A., Barquín, L. F., Fernández, J. R., de Pedro, I., Fdez-Gubieda, M., Alonso, J. ve Olivi, L., 2014, Interplay between microstructure and magnetism in NiO nanoparticles: breakdown of the antiferromagnetic order, Nanoscale, 6 (1), 457-465.
  • Rinaldi-Montes, N., Gorria, P., Martínez-Blanco, D., Amghouz, Z., Fuertes, A. B., Barquín, L. F., de Pedro, I., Olivi, L. ve Blanco, J. A., 2015, Unravelling the onset of the exchange bias effect in Ni (core)@ NiO (shell) nanoparticles embedded in a mesoporous carbon matrix, Journal of Materials Chemistry C, 3 (22), 5674-5682.
  • Sahebdadzehi, Z., Khodadadi, M. ve Dorri, H., 2022, Synthesis and application of N_doped FeNi3/TiO2 nano-photocatalyst in advanced oxidation process to remove reactive red 195 dye from aqueous medium.
  • Sounart, T. L., Liu, J., Voigt, J. A., Hsu, J. W., Spoerke, E. D., Tian, Z. ve Jiang, Y., 2006, Sequential nucleation and growth of complex nanostructured films, Advanced Functional Materials, 16 (3), 335-344.
  • Su, X., Zheng, H., Yang, Z., Zhu, Y. ve Pan, A., 2003, Preparation of nanosized particles of FeNi and FeCo alloy in solution, Journal of materials science, 38 (22), 4581-4585.
  • Tan, L., Xu, J., Xue, X., Lou, Z., Zhu, J., Baig, S. A. ve Xu, X., 2014, Multifunctional nanocomposite Fe 3 O 4@ SiO 2–mPD/SP for selective removal of Pb (ii) and Cr (vi) from aqueous solutions, RSC advances, 4 (86), 45920-45929.
  • Tian, J. T., Gong, C. H., Yu, L. G., Wu, Z. S. ve Zhang, Z. J., 2008, Synthesis of dandelion-like three-dimensional nickel nanostructures via solvothermal route, Chinese Chemical Letters, 19 (9), 1123-1126.
  • Tremel, W., Kleinke, H., Derstroff, V. ve Reisner, C., 1995, Transition metal chalcogenides: new views on an old topic, Journal of alloys and compounds, 219 (1-2), 73-82.
  • Vitta, S., Khuntia, A., Ravikumar, G. ve Bahadur, D., 2008, Electrical and magnetic properties of nanocrystalline Fe100− xNix alloys, Journal of Magnetism and Magnetic Materials, 320 (3-4), 182-189.
  • Xiaomin, N., Xiaobo, S., Huagui, Z., Dongen, Z., Dandan, Y. ve Qingbiao, Z., 2005, Studies on the one-step preparation of iron nanoparticles in solution, Journal of Crystal Growth, 275 (3-4), 548-553.
  • Yan, J.-M., Zhang, X.-B., Han, S., Shioyama, H. ve Xu, Q., 2009, Magnetically recyclable Fe–Ni alloy catalyzed dehydrogenation of ammonia borane in aqueous solution under ambient atmosphere, Journal of Power Sources, 194 (1), 478-481.
  • Yang, K., Peng, H., Wen, Y. ve Li, N., 2010, Re-examination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles, Applied Surface Science, 256 (10), 3093-3097.
  • Yıldırım, Ö. A., Unalan, H. E. ve Durucan, C., 2013, Highly efficient room temperature synthesis of silver‐doped zinc oxide (ZnO: Ag) nanoparticles: structural, optical, and photocatalytic properties, Journal of the American Ceramic Society, 96 (3), 766-773.
  • Yu, K., Kim, D. J., Chung, H. S. ve Liang, H., 2003, Dispersed rodlike nickel powder synthesized by modified polyol process, Materials Letters, 57 (24-25), 3992-3997.
  • Yuan, M. L., Tao, J. H., Yu, L., Song, C., Qiu, G. Z., Li, Y. ve Xu, Z. H., 2011, Synthesis and magnetic properties of Fe–Ni alloy nanoparticles obtained by hydrothermal reaction, Advanced Materials Research, 748-753.
  • Zhou, X.-M. ve Wei, X.-W., 2009, Single crystalline FeNi3 dendrites: large scale synthesis, formation mechanism, and magnetic properties, Crystal Growth and Design, 9 (1), 7-12.
  • Zhou, Y.-H., Harmelin, M. ve Bigot, J., 1989, Sintering behaviour of ultra-fine Fe, Ni and Fe-25wt% Ni powders, Scripta metallurgica, 23 (8), 1391-1396.

Ni-FeNi3-Fe3O4 METALİK NANOALAŞIMLARIN HİDROTERMAL YÖNTEMLE SENTEZİ VE KARAKTERİZASYONU

Year 2022, Volume: 10 Issue: 4, 965 - 975, 03.12.2022
https://doi.org/10.36306/konjes.1148331

Abstract

Bu çalışmada, Ni-FeNi3-Fe3O4 metalik nanoalaşımlar hidrotermal yöntem kullanılarak 180 °C’de 2 saatte başarılı bir şekilde sentezlenmiştir. Sentezi gerçekleştirilen metalik nanoalaşımların yapısal ve morfolojik özellikleri X-ışını Kırınımı (XRD), Fourier Dönüşümlü Infrared Spektrofotometresi (FTIR) ve Taramalı Elektron Mikroskobu (SEM) kullanılarak karakterize edilmiştir. X-ışını Kırınım metodu sonucu elde edilen kırınım desenleri incelendiğinde yüksek şiddetli piklerin kübik kristal yapıdaki FeNi3 ve metalik Ni’e ait olduğu belirlenmiştir. Daha düşük şiddette elde edilen piklerin ise Fe3O4 yapısına ait olduğu gösterilmiştir. FTIR analizi sonucu 455,2 ve 570,9 cm-1’de elde edilen piklerin sırasıyla Fe-Ni ve Fe-O bağlarına ait karakteristik pik olduğu gösterilmiştir. SEM-EDS analizlerinden ise sentezlenen metalik nanoalaşımlar ortalama yarıçapı 3,51 μm olan küresel parçacıkların metalik Ni fazı olduğu ve yüzeylerin bir miktar FeNi3 nanoparçacıkları ile kaplandığı görülmüştür. Ortalama yarıçapı 63,33 nm olan düzensiz şekilli nanoparçacıkların ise Fe3O4 ile birlikte FeNi3 yapısında olduğu belirlenmiştir.

References

  • Baylan, E. ve Yildirim, O. A., 2019, Highly efficient photocatalytic activity of stable manganese-doped zinc oxide (Mn: ZnO) nanofibers via electrospinning method, Materials Science in Semiconductor Processing, 103, 104621.
  • Biffis, A., Orlandi, N. ve Corain, B., 2003, Microgel‐stabilized metal nanoclusters: Size control by microgel nanomorphology, Advanced materials, 15 (18), 1551-1555.
  • Bouremana, A., Guittoum, A., Hemmous, M., Rahal, B., Sunol, J., Martínez-Blanco, D., Blanco, J., Gorria, P. ve Benrekaa, N., 2014, Crystal structure, microstructure and magnetic properties of Ni nanoparticles elaborated by hydrothermal route, Journal of Magnetism and Magnetic Materials, 358, 11-15.
  • Bouremana, A., Guittoum, A., Hemmous, M., Martínez-Blanco, D., Gorria, P., Blanco, J. ve Benrekaa, N., 2015, Microstructure, morphology and magnetic properties of Ni nanoparticles synthesized by hydrothermal method, Materials Chemistry and Physics, 160, 435-439.
  • Bouremana, A., Guittoum, A., Hemmous, M., Martínez-Blanco, D., Gorria, P. ve Blanco, J., 2018, Low temperature hydrothermal synthesis of Ni75Fe25 nanostructured powders: Microstructure, morphology and magnetic behaviour, Journal of Magnetism and Magnetic Materials, 466, 212-218.
  • Chen, H., Xu, C., Zhao, G. ve Liu, Y., 2013, Template-free formation of urchin-like FeNi3 microstructures by hydrothermal reduction, Materials Letters, 91, 75-77.
  • Chen, Y.-C., Zheng, F.-C., Min, Y.-L., Wang, T. ve Zhao, Y.-G., 2012, Synthesis and properties of magnetic FeNi3 alloyed microchains obtained by hydrothermal reduction, Solid state sciences, 14 (7), 809-813.
  • Chen, Y., Luo, X., Yue, G.-H., Luo, X. ve Peng, D.-L., 2009, Synthesis of iron–nickel nanoparticles via a nonaqueous organometallic route, Materials Chemistry and Physics, 113 (1), 412-416.
  • Chicinas, I., Geoffroy, O., Isnard, O. ve Pop, V., 2005, Soft magnetic composite based on mechanically alloyed nanocrystalline Ni3Fe phase, Journal of Magnetism and Magnetic Materials, 290, 1531-1534.
  • Chicinaş, I., Pop, V., Isnard, O., Le Breton, J. ve Juraszek, J., 2003, Synthesis and magnetic properties of Ni3Fe intermetallic compound obtained by mechanical alloying, Journal of alloys and compounds, 352 (1-2), 34-40.
  • Datta, A., Pal, M., Chakravorty, D., Das, D. ve Chintalapudi, S., 1999, Disorder in nanocrystalline Ni3Fe, Journal of Magnetism and Magnetic Materials, 205 (2-3), 301-306.
  • Ding, J., Sun, Q., Zhong, L., Wang, X., Chai, L., Li, Q., Li, T.-T., Hu, Y., Qian, J. ve Huang, S., 2020, Thermal conversion of hollow nickel-organic framework into bimetallic FeNi3 alloy embedded in carbon materials as efficient oer electrocatalyst, Electrochimica Acta, 354, 136716.
  • Djekoun, A., Boudinar, N., Chebli, A., Otmani, A., Benabdeslem, M., Bouzabata, B. ve Greneche, J., 2009, Structure and magnetic properties of Fe-rich nanostructured Fe100− XNiX powders obtained by mechanical alloying, Physics Procedia, 2 (3), 693-700.
  • Eroglu, S., Zhang, S. ve Messing, G., 1996, Synthesis of nanocrystalline Ni–Fe alloy powders by spray pyrolysis, Journal of materials research, 11 (9), 2131-2134.
  • Estrader, M., López-Ortega, A., Estradé, S., Golosovsky, I. V., Salazar-Alvarez, G., Vasilakaki, M., Trohidou, K., Varela, M., Stanley, D. ve Sinko, M., 2013, Robust antiferromagnetic coupling in hard-soft bi-magnetic core/shell nanoparticles, Nature communications, 4 (1), 1-8.
  • Fernández-García, M. P., Gorria, P., Blanco, J. A., Fuertes, A. B., Sevilla, M., Boada, R., Chaboy, J., Schmool, D. ve Grenèche, J.-M., 2010, Microstructure and magnetism of nanoparticles with γ-Fe core surrounded by α-Fe and iron oxide shells, Physical Review B, 81 (9), 094418.
  • Fernández-García, M. P., Gorria, P., Sevilla, M., Proenca, M. P., Boada, R., Chaboy, J., Fuertes, A. B. ve Blanco, J. A., 2011, Enhanced protection of carbon-encapsulated magnetic nickel nanoparticles through a sucrose-based synthetic strategy, The Journal of Physical Chemistry C, 115 (13), 5294-5300.
  • Golovin, Y. I., Stolyarov, R. ve Shuklinov, A., 2013, Morphology and growth kinetics of Ni nanoparticles on the surface of multiwalled carbon nanotubes at galvanostatic electrodeposition, Technical Physics, 58 (8), 1189-1193.
  • Gong, T. ve Tang, Y., 2020, Preparation of multifunctional nanocomposites Fe3O4@ SiO2–EDTA and its adsorption of heavy metal ions in water solution, Water Science and Technology, 81 (1), 170-177.
  • Guo, H., Li, M., Qin, Z., Li, F., Zhang, X., Wu, W. ve Cheng, H., 2021, Shape-controlled synthesis of flake-like FeNi3 nanoparticles based on sodium lignosulfonate, Advanced Powder Technology, 32 (3), 755-763.
  • Haviv, A. H., Grenèche, J.-M. ve Lellouche, J.-P., 2010, Aggregation control of hydrophilic maghemite (γ-Fe2O3) nanoparticles by surface doping using cerium atoms, Journal of the American Chemical Society, 132 (36), 12519-12521.
  • Hongxia, G., Hua, C., Fan, L., Zhenping, Q., Suping, C. ve Zuoren, N., 2012, Shape-controlled synthesis of FeNi3 nanoparticles by ambient chemical reduction and their magnetic properties, Journal of materials research, 27 (11), 1522-1530.
  • Keles, E., Yildirim, M., Öztürk, T. ve Yildirim, O. A., 2020, Hydrothermally synthesized UV light active zinc stannate: tin oxide (ZTO: SnO2) nanocomposite photocatalysts for photocatalytic applications, Materials Science in Semiconductor Processing, 110, 104959.
  • Khodadadi, M., Panahi, A. H., Al-Musawi, T. J., Ehrampoush, M. ve Mahvi, A., 2019, The catalytic activity of FeNi3@ SiO2 magnetic nanoparticles for the degradation of tetracycline in the heterogeneous Fenton-like treatment method, Journal of Water Process Engineering, 32, 100943.
  • Kim, S.-H., Sohn, H.-J., Joo, Y.-C., Kim, Y.-W., Yim, T.-H., Lee, H.-Y. ve Kang, T., 2005, Effect of saccharin addition on the microstructure of electrodeposited Fe–36 wt.% Ni alloy, Surface and Coatings Technology, 199 (1), 43-48.
  • Liao, Q., Tannenbaum, R. ve Wang, Z. L., 2006, Synthesis of FeNi3 alloyed nanoparticles by hydrothermal reduction, The Journal of Physical Chemistry B, 110 (29), 14262-14265.
  • Liu, J. ve Vipulanandan, C., 2017, Effects of Fe, Ni, and Fe/Ni metallic nanoparticles on power production and biosurfactant production from used vegetable oil in the anode chamber of a microbial fuel cell, Waste Management, 66, 169-177.
  • Liu, L., Guan, J., Shi, W., Sun, Z. ve Zhao, J., 2010, Facile synthesis and growth mechanism of flowerlike Ni− Fe alloy nanostructures, The Journal of Physical Chemistry C, 114 (32), 13565-13570.
  • Liu, Y., Chi, Y., Shan, S., Yin, J., Luo, J. ve Zhong, C.-J., 2014, Characterization of magnetic NiFe nanoparticles with controlled bimetallic composition, Journal of alloys and compounds, 587, 260-266.
  • Mao, Y., Parsons, J. ve McCloy, J. S., 2013, Magnetic properties of double perovskite La 2 BMnO 6 (B= Ni or Co) nanoparticles, Nanoscale, 5 (11), 4720-4728.
  • Moustafa, S. ve Daoush, W., 2007, Synthesis of nano-sized Fe–Ni powder by chemical process for magnetic applications, Journal of materials processing technology, 181 (1-3), 59-63.
  • Nasseh, N., Arghavan, F. S., Rodriguez-Couto, S. ve Hossein Panahi, A., 2020a, Synthesis of FeNi3/SiO2/CuS magnetic nano-composite as a novel adsorbent for Congo Red dye removal, International Journal of Environmental Analytical Chemistry, 1-21.
  • Nasseh, N., Barikbin, B. ve Taghavi, L., 2020b, Photocatalytic degradation of tetracycline hydrochloride by FeNi3/SiO2/CuS magnetic nanocomposite under simulated solar irradiation: Efficiency, stability, kinetic and pathway study, Environmental Technology & Innovation, 20, 101035.
  • Rinaldi-Montes, N., Gorria, P., Martínez-Blanco, D., Fuertes, A., Barquín, L. F., Fernández, J. R., de Pedro, I., Fdez-Gubieda, M., Alonso, J. ve Olivi, L., 2014, Interplay between microstructure and magnetism in NiO nanoparticles: breakdown of the antiferromagnetic order, Nanoscale, 6 (1), 457-465.
  • Rinaldi-Montes, N., Gorria, P., Martínez-Blanco, D., Amghouz, Z., Fuertes, A. B., Barquín, L. F., de Pedro, I., Olivi, L. ve Blanco, J. A., 2015, Unravelling the onset of the exchange bias effect in Ni (core)@ NiO (shell) nanoparticles embedded in a mesoporous carbon matrix, Journal of Materials Chemistry C, 3 (22), 5674-5682.
  • Sahebdadzehi, Z., Khodadadi, M. ve Dorri, H., 2022, Synthesis and application of N_doped FeNi3/TiO2 nano-photocatalyst in advanced oxidation process to remove reactive red 195 dye from aqueous medium.
  • Sounart, T. L., Liu, J., Voigt, J. A., Hsu, J. W., Spoerke, E. D., Tian, Z. ve Jiang, Y., 2006, Sequential nucleation and growth of complex nanostructured films, Advanced Functional Materials, 16 (3), 335-344.
  • Su, X., Zheng, H., Yang, Z., Zhu, Y. ve Pan, A., 2003, Preparation of nanosized particles of FeNi and FeCo alloy in solution, Journal of materials science, 38 (22), 4581-4585.
  • Tan, L., Xu, J., Xue, X., Lou, Z., Zhu, J., Baig, S. A. ve Xu, X., 2014, Multifunctional nanocomposite Fe 3 O 4@ SiO 2–mPD/SP for selective removal of Pb (ii) and Cr (vi) from aqueous solutions, RSC advances, 4 (86), 45920-45929.
  • Tian, J. T., Gong, C. H., Yu, L. G., Wu, Z. S. ve Zhang, Z. J., 2008, Synthesis of dandelion-like three-dimensional nickel nanostructures via solvothermal route, Chinese Chemical Letters, 19 (9), 1123-1126.
  • Tremel, W., Kleinke, H., Derstroff, V. ve Reisner, C., 1995, Transition metal chalcogenides: new views on an old topic, Journal of alloys and compounds, 219 (1-2), 73-82.
  • Vitta, S., Khuntia, A., Ravikumar, G. ve Bahadur, D., 2008, Electrical and magnetic properties of nanocrystalline Fe100− xNix alloys, Journal of Magnetism and Magnetic Materials, 320 (3-4), 182-189.
  • Xiaomin, N., Xiaobo, S., Huagui, Z., Dongen, Z., Dandan, Y. ve Qingbiao, Z., 2005, Studies on the one-step preparation of iron nanoparticles in solution, Journal of Crystal Growth, 275 (3-4), 548-553.
  • Yan, J.-M., Zhang, X.-B., Han, S., Shioyama, H. ve Xu, Q., 2009, Magnetically recyclable Fe–Ni alloy catalyzed dehydrogenation of ammonia borane in aqueous solution under ambient atmosphere, Journal of Power Sources, 194 (1), 478-481.
  • Yang, K., Peng, H., Wen, Y. ve Li, N., 2010, Re-examination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles, Applied Surface Science, 256 (10), 3093-3097.
  • Yıldırım, Ö. A., Unalan, H. E. ve Durucan, C., 2013, Highly efficient room temperature synthesis of silver‐doped zinc oxide (ZnO: Ag) nanoparticles: structural, optical, and photocatalytic properties, Journal of the American Ceramic Society, 96 (3), 766-773.
  • Yu, K., Kim, D. J., Chung, H. S. ve Liang, H., 2003, Dispersed rodlike nickel powder synthesized by modified polyol process, Materials Letters, 57 (24-25), 3992-3997.
  • Yuan, M. L., Tao, J. H., Yu, L., Song, C., Qiu, G. Z., Li, Y. ve Xu, Z. H., 2011, Synthesis and magnetic properties of Fe–Ni alloy nanoparticles obtained by hydrothermal reaction, Advanced Materials Research, 748-753.
  • Zhou, X.-M. ve Wei, X.-W., 2009, Single crystalline FeNi3 dendrites: large scale synthesis, formation mechanism, and magnetic properties, Crystal Growth and Design, 9 (1), 7-12.
  • Zhou, Y.-H., Harmelin, M. ve Bigot, J., 1989, Sintering behaviour of ultra-fine Fe, Ni and Fe-25wt% Ni powders, Scripta metallurgica, 23 (8), 1391-1396.
There are 50 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Mehmet Şahin Ataş 0000-0001-8361-5913

Özlem Altıntaş Yıldırım 0000-0001-7867-7992

Publication Date December 3, 2022
Submission Date July 25, 2022
Acceptance Date October 5, 2022
Published in Issue Year 2022 Volume: 10 Issue: 4

Cite

IEEE M. Ş. Ataş and Ö. Altıntaş Yıldırım, “Ni-FeNi3-Fe3O4 METALİK NANOALAŞIMLARIN HİDROTERMAL YÖNTEMLE SENTEZİ VE KARAKTERİZASYONU”, KONJES, vol. 10, no. 4, pp. 965–975, 2022, doi: 10.36306/konjes.1148331.