Research Article
BibTex RIS Cite

COMPARATIVE PERFORMANCE ANALYSIS OF A FEED-FORWARD NEURAL NETWORK-BASED MPPT FOR RAPIDLY CHANGING CLIMATIC CONDITIONS

Year 2023, Volume: 11 Issue: 1, 71 - 86, 01.03.2023
https://doi.org/10.36306/konjes.1179030

Abstract

Rapid and abrupt changes in climatic conditions present a challenge to classical MPPT techniques as they drift from the MPP, resulting in loss of power. This paper presents a new MPPT technique based on a feed-forward artificial neural network (FFANN) and a direct control technique. In the proposed approach, FFAAN estimates the optimum value of the PV output voltage V_MPP, while the direct control technique achieves an optimal adjustment of the duty cycle making the operating point at MPP. To evaluate the performance of the proposed technique, the accurate electrical model of the system parts was built and simulated in MATLAB/Simulink environment. The simulation results are collected under rapidly changing climatic conditions. Simulation results show that the proposed MPPT technique achieves higher performance in terms of tracking efficiency and convergence speed compared to both the IC-based MPPT and FL-based MPPT systems. The results show that the proposed technique accurately estimates V_MPP, achieving a tracking efficiency of 99.9%, while the tracking efficiency is 94% when using FL-based MPPT and 91.5% when using IC-based MPPT. This demonstrates that the proposed technique exhibits superior performance under rapidly changing climatic conditions and increases energy production efficiency compared to classical techniques.

References

  • [1] S. D. Al-Majidi, M. F. Abbod, and H. S. Al-Raweshidy, "A particle swarm optimisation-trained feedforward neural network for predicting the maximum power point of a photovoltaic array," Engineering Applications of Artificial Intelligence, vol. 92, p. 103688, 2020.
  • [2] S. Messalti, A. Harrag, and A. Loukriz, "A new variable step size neural networks MPPT controller: Review, simulation and hardware implementation," Renewable and Sustainable Energy Reviews, vol. 68, pp. 221-233, 2017.
  • [3] M. H. Zafar et al., "A novel meta-heuristic optimization algorithm based MPPT control technique for PV systems under complex partial shading condition," Sustainable Energy Technologies and Assessments, vol. 47, p. 101367, 2021.
  • [4] P. Bahrani and N. Jain, "Performance analysis of P&O and FLC method of MPPT for PV module based on five-parameter model," in Proceedings of international conference on computational intelligence and emerging power system, 2022, pp. 357-369: Springer.
  • [5] A. Kulaksız, G. Gökkuş, and F. Alhajomar, "Rapid control prototyping based on 32-Bit ARM Cortex-M3 microcontroller for photovoltaic MPPT algorithms," 2019.
  • [6] R.-M. Chao, S.-H. Ko, H.-K. Lin, and I.-K. Wang, "Evaluation of a distributed photovoltaic system in grid-connected and standalone applications by different MPPT algorithms," Energies, vol. 11, no. 6, p. 1484, 2018.
  • [7] M. B. Hayat, D. Ali, K. C. Monyake, L. Alagha, and N. Ahmed, "Solar energy—A look into power generation, challenges, and a solar‐powered future," International Journal of Energy Research, vol. 43, no. 3, pp. 1049-1067, 2019.
  • [8] F. Alhaj Omar and A. A. Kulaksiz, "Experimental evaluation of a hybrid global maximum power tracking algorithm based on modified firefly and perturbation and observation algorithms," Neural Computing and Applications, vol. 33, no. 24, pp. 17185-17208, 2021.
  • [9] A. M. O. Anwer, F. A. Omar, and A. A. Kulaksiz, "Design of a fuzzy logic-based MPPT controller for a PV system employing sensorless control of MRAS-based PMSM," International Journal of Control, Automation and Systems, vol. 18, no. 11, pp. 2788-2797, 2020.
  • [10] M. H. Alsharif, K. Yahya, and Z. W. Geem, "Strategic market growth and policy recommendations for sustainable solar energy deployment in South Korea," Journal of Electrical Engineering & Technology, vol. 15, no. 2, pp. 803-815, 2020.
  • [11] V. Gupta, M. Sharma, R. K. Pachauri, and K. D. Babu, "Comprehensive review on effect of dust on solar photovoltaic system and mitigation techniques," Solar Energy, vol. 191, pp. 596-622, 2019.
  • [12] M. A. Basit, S. Dilshad, R. Badar, and S. M. Sami ur Rehman, "Limitations, challenges, and solution approaches in grid‐connected renewable energy systems," International Journal of Energy Research, vol. 44, no. 6, pp. 4132-4162, 2020.
  • [13] Y. Wan, M. Mao, L. Zhou, Q. Zhang, X. Xi, and C. Zheng, "A novel nature-inspired maximum power point tracking (MPPT) controller based on SSA-GWO algorithm for partially shaded photovoltaic systems," Electronics, vol. 8, no. 6, p. 680, 2019.
  • [14] H. H. Ammar, A. T. Azar, R. Shalaby, and M. I. Mahmoud, "Metaheuristic optimization of fractional order incremental conductance (FO-INC) maximum power point tracking (MPPT)," Complexity, vol. 2019, 2019.
  • [15] F. AlhajOmar, G. Gökkuş, and A. Kulaksız, "Performance Evaluation of P&O, IC and FL Algorithms used in Maximum Power Point Tracking Systems," in International Conference on Engineering Technologies (ICENTE’18), Konya, TÜRKİYE, 2018, pp. 286-289.
  • [16] S. Motahhir, A. El Hammoumi, and A. El Ghzizal, "The most used MPPT algorithms: Review and the suitable low-cost embedded board for each algorithm," Journal of cleaner production, vol. 246, p. 118983, 2020.
  • [17] A. Harrag and S. Messalti, "Variable step size modified P&O MPPT algorithm using GA-based hybrid offline/online PID controller," Renewable and Sustainable Energy Reviews, vol. 49, pp. 1247-1260, 2015.
  • [18] I. Houssamo, F. Locment, and M. Sechilariu, "Experimental analysis of impact of MPPT methods on energy efficiency for photovoltaic power systems," International Journal of Electrical Power & Energy Systems, vol. 46, pp. 98-107, 2013.
  • [19] A. Mellit and S. A. Kalogirou, "MPPT-based artificial intelligence techniques for photovoltaic systems and its implementation into field programmable gate array chips: Review of current status and future perspectives," Energy, vol. 70, pp. 1-21, 2014.
  • [20] F. A. Omar, N. Pamuk, and A. A. KULAKSIZ, "A critical evaluation of maximum power point tracking techniques for PV systems working under partial shading conditions," Turkish Journal of Engineering, vol. 7, no. 1, pp. 73-81, 2023.
  • [21] V. Jately, B. Azzopardi, J. Joshi, A. Sharma, and S. Arora, "Experimental analysis of hill-climbing MPPT algorithms under low irradiance levels," Renewable and Sustainable Energy Reviews, vol. 150, p. 111467, 2021.
  • [22] M. Abdel-Salam, M.-T. El-Mohandes, and M. Goda, "An improved perturb-and-observe based MPPT method for PV systems under varying irradiation levels," Solar Energy, vol. 171, pp. 547-561, 2018.
  • [23] M. A. Bakar Siddique, A. Asad, R. M. Asif, A. U. Rehman, M. T. Sadiq, and I. Ullah, "Implementation of incremental conductance MPPT algorithm with integral regulator by using boost converter in grid-connected PV array," IETE Journal of Research, pp. 1-14, 2021.
  • [24] D. Baimel, S. Tapuchi, Y. Levron, and J. Belikov, "Improved fractional open circuit voltage MPPT methods for PV systems," Electronics, vol. 8, no. 3, p. 321, 2019.
  • [25] M. M. Shebani, T. Iqbal, and J. E. Quaicoe, "Comparing bisection numerical algorithm with fractional short circuit current and open circuit voltage methods for MPPT photovoltaic systems," in 2016 IEEE Electrical Power and Energy Conference (EPEC), 2016, pp. 1-5: IEEE.
  • [26] A. Gupta, P. Kumar, R. K. Pachauri, and Y. K. Chauhan, "Performance analysis of neural network and fuzzy logic based MPPT techniques for solar PV systems," in 2014 6th IEEE power India international conference (PIICON), 2014, pp. 1-6: IEEE.
  • [27] T. T. Yetayew, T. Jyothsna, and G. Kusuma, "Evaluation of Incremental conductance and Firefly algorithm for PV MPPT application under partial shade condition," in 2016 IEEE 6th International Conference on Power Systems (ICPS), 2016, pp. 1-6: IEEE.
  • [28] M. Mokhlis, M. Ferfra, H. A. Vall, C. C. Ahmed, and A. Taouni, "Comparative study between the different MPPT techniques," in 2020 5th International Conference on Renewable Energies for Developing Countries (REDEC), 2020, pp. 1-6: IEEE.
  • [29] C. B. Prasad, S. K. Sonam, B. R. G. Reddy, and P. Harika, "A fuzzy logic based MPPT method for solar power generation," in 2017 International Conference on Intelligent Computing and Control Systems (ICICCS), 2017, pp. 1182-1186: IEEE.
  • [30] S. Ozdemir, N. Altin, and I. Sefa, "Fuzzy logic based MPPT controller for high conversion ratio quadratic boost converter," International Journal of Hydrogen Energy, vol. 42, no. 28, pp. 17748-17759, 2017.
  • [31] S. A. Rizzo and G. Scelba, "ANN based MPPT method for rapidly variable shading conditions," Applied Energy, vol. 145, pp. 124-132, 2015.
  • [32] M. Kumar, S. Kapoor, R. Nagar, A. J. I. J. o. A. R. i. E. Verma, Electronics, and I. Engineering, "Comparison between IC and fuzzy logic MPPT algorithm based solar PV system using boost converter," vol. 4, no. 6, pp. 4927-4939, 2015.
  • [33] M. K. Al-Nussairi, R. Bayindir, and E. Hossain, "Fuzzy logic controller for Dc-Dc buck converter with constant power load," in 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), 2017, pp. 1175-1179: IEEE.
  • [34] A. Safari and S. J. I. t. o. i. e. Mekhilef, "Simulation and hardware implementation of incremental conductance MPPT with direct control method using cuk converter," vol. 58, no. 4, pp. 1154-1161, 2010.

Hızla Değişen İklim Koşulları İçin İleri Beslemeli Sinir Ağı Tabanlı MPPT'nin Karşılaştırmalı Performans Analizi

Year 2023, Volume: 11 Issue: 1, 71 - 86, 01.03.2023
https://doi.org/10.36306/konjes.1179030

Abstract

İklim koşullarındaki hızlı ve ani değişiklikler, klasik MPPT teknikleri için bir zorluk teşkil eder çünkü MPP'den uzaklaşır ve bu da güç kaybına neden olur. Bu makale, ileri beslemeli bir yapay sinir ağına (FFANN) ve bir doğrudan kontrol tekniğine dayanan yeni bir MPPT tekniği sunmaktadır. Önerilen yaklaşımda, FFAAN, PV çıkış geriliminin V_MPP optimum değerini tahmin ederken, doğrudan kontrol tekniği MPP'de çalışma noktasını oluşturan görev döngüsünün optimal bir ayarını gerçekleştirir. Önerilen tekniğin performansını değerlendirmek için sistem modeli MATLAB/Simulink ortamında oluşturulmuş ve simüle edilmiştir. Simülasyon sonuçları hızla değişen iklim koşulları altında toplanır. Simülasyon sonuçları, önerilen MPPT tekniğinin hem IC tabanlı MPPT hem de FL tabanlı MPPT sistemlerine kıyasla izleme verimliliği ve yakınsama hızı açısından daha yüksek performansa ulaştığını göstermektedir. Sonuçlar, önerilen tekniğin V_MPP'yi doğru bir şekilde tahmin ettiğini ve %99.9'luk bir izleme verimliliği elde ederken, FL tabanlı MPPT kullanıldığında %94 ve IC tabanlı MPPT kullanıldığında %91.5'lik bir izleme verimliliği sağladığını göstermektedir. Bu da önerilen tekniğin klasik tekniklere göre hızla değişen iklim koşullarında üstün performans sergilediğini ve enerji üretim verimliliğini artırdığını göstermektedir.

References

  • [1] S. D. Al-Majidi, M. F. Abbod, and H. S. Al-Raweshidy, "A particle swarm optimisation-trained feedforward neural network for predicting the maximum power point of a photovoltaic array," Engineering Applications of Artificial Intelligence, vol. 92, p. 103688, 2020.
  • [2] S. Messalti, A. Harrag, and A. Loukriz, "A new variable step size neural networks MPPT controller: Review, simulation and hardware implementation," Renewable and Sustainable Energy Reviews, vol. 68, pp. 221-233, 2017.
  • [3] M. H. Zafar et al., "A novel meta-heuristic optimization algorithm based MPPT control technique for PV systems under complex partial shading condition," Sustainable Energy Technologies and Assessments, vol. 47, p. 101367, 2021.
  • [4] P. Bahrani and N. Jain, "Performance analysis of P&O and FLC method of MPPT for PV module based on five-parameter model," in Proceedings of international conference on computational intelligence and emerging power system, 2022, pp. 357-369: Springer.
  • [5] A. Kulaksız, G. Gökkuş, and F. Alhajomar, "Rapid control prototyping based on 32-Bit ARM Cortex-M3 microcontroller for photovoltaic MPPT algorithms," 2019.
  • [6] R.-M. Chao, S.-H. Ko, H.-K. Lin, and I.-K. Wang, "Evaluation of a distributed photovoltaic system in grid-connected and standalone applications by different MPPT algorithms," Energies, vol. 11, no. 6, p. 1484, 2018.
  • [7] M. B. Hayat, D. Ali, K. C. Monyake, L. Alagha, and N. Ahmed, "Solar energy—A look into power generation, challenges, and a solar‐powered future," International Journal of Energy Research, vol. 43, no. 3, pp. 1049-1067, 2019.
  • [8] F. Alhaj Omar and A. A. Kulaksiz, "Experimental evaluation of a hybrid global maximum power tracking algorithm based on modified firefly and perturbation and observation algorithms," Neural Computing and Applications, vol. 33, no. 24, pp. 17185-17208, 2021.
  • [9] A. M. O. Anwer, F. A. Omar, and A. A. Kulaksiz, "Design of a fuzzy logic-based MPPT controller for a PV system employing sensorless control of MRAS-based PMSM," International Journal of Control, Automation and Systems, vol. 18, no. 11, pp. 2788-2797, 2020.
  • [10] M. H. Alsharif, K. Yahya, and Z. W. Geem, "Strategic market growth and policy recommendations for sustainable solar energy deployment in South Korea," Journal of Electrical Engineering & Technology, vol. 15, no. 2, pp. 803-815, 2020.
  • [11] V. Gupta, M. Sharma, R. K. Pachauri, and K. D. Babu, "Comprehensive review on effect of dust on solar photovoltaic system and mitigation techniques," Solar Energy, vol. 191, pp. 596-622, 2019.
  • [12] M. A. Basit, S. Dilshad, R. Badar, and S. M. Sami ur Rehman, "Limitations, challenges, and solution approaches in grid‐connected renewable energy systems," International Journal of Energy Research, vol. 44, no. 6, pp. 4132-4162, 2020.
  • [13] Y. Wan, M. Mao, L. Zhou, Q. Zhang, X. Xi, and C. Zheng, "A novel nature-inspired maximum power point tracking (MPPT) controller based on SSA-GWO algorithm for partially shaded photovoltaic systems," Electronics, vol. 8, no. 6, p. 680, 2019.
  • [14] H. H. Ammar, A. T. Azar, R. Shalaby, and M. I. Mahmoud, "Metaheuristic optimization of fractional order incremental conductance (FO-INC) maximum power point tracking (MPPT)," Complexity, vol. 2019, 2019.
  • [15] F. AlhajOmar, G. Gökkuş, and A. Kulaksız, "Performance Evaluation of P&O, IC and FL Algorithms used in Maximum Power Point Tracking Systems," in International Conference on Engineering Technologies (ICENTE’18), Konya, TÜRKİYE, 2018, pp. 286-289.
  • [16] S. Motahhir, A. El Hammoumi, and A. El Ghzizal, "The most used MPPT algorithms: Review and the suitable low-cost embedded board for each algorithm," Journal of cleaner production, vol. 246, p. 118983, 2020.
  • [17] A. Harrag and S. Messalti, "Variable step size modified P&O MPPT algorithm using GA-based hybrid offline/online PID controller," Renewable and Sustainable Energy Reviews, vol. 49, pp. 1247-1260, 2015.
  • [18] I. Houssamo, F. Locment, and M. Sechilariu, "Experimental analysis of impact of MPPT methods on energy efficiency for photovoltaic power systems," International Journal of Electrical Power & Energy Systems, vol. 46, pp. 98-107, 2013.
  • [19] A. Mellit and S. A. Kalogirou, "MPPT-based artificial intelligence techniques for photovoltaic systems and its implementation into field programmable gate array chips: Review of current status and future perspectives," Energy, vol. 70, pp. 1-21, 2014.
  • [20] F. A. Omar, N. Pamuk, and A. A. KULAKSIZ, "A critical evaluation of maximum power point tracking techniques for PV systems working under partial shading conditions," Turkish Journal of Engineering, vol. 7, no. 1, pp. 73-81, 2023.
  • [21] V. Jately, B. Azzopardi, J. Joshi, A. Sharma, and S. Arora, "Experimental analysis of hill-climbing MPPT algorithms under low irradiance levels," Renewable and Sustainable Energy Reviews, vol. 150, p. 111467, 2021.
  • [22] M. Abdel-Salam, M.-T. El-Mohandes, and M. Goda, "An improved perturb-and-observe based MPPT method for PV systems under varying irradiation levels," Solar Energy, vol. 171, pp. 547-561, 2018.
  • [23] M. A. Bakar Siddique, A. Asad, R. M. Asif, A. U. Rehman, M. T. Sadiq, and I. Ullah, "Implementation of incremental conductance MPPT algorithm with integral regulator by using boost converter in grid-connected PV array," IETE Journal of Research, pp. 1-14, 2021.
  • [24] D. Baimel, S. Tapuchi, Y. Levron, and J. Belikov, "Improved fractional open circuit voltage MPPT methods for PV systems," Electronics, vol. 8, no. 3, p. 321, 2019.
  • [25] M. M. Shebani, T. Iqbal, and J. E. Quaicoe, "Comparing bisection numerical algorithm with fractional short circuit current and open circuit voltage methods for MPPT photovoltaic systems," in 2016 IEEE Electrical Power and Energy Conference (EPEC), 2016, pp. 1-5: IEEE.
  • [26] A. Gupta, P. Kumar, R. K. Pachauri, and Y. K. Chauhan, "Performance analysis of neural network and fuzzy logic based MPPT techniques for solar PV systems," in 2014 6th IEEE power India international conference (PIICON), 2014, pp. 1-6: IEEE.
  • [27] T. T. Yetayew, T. Jyothsna, and G. Kusuma, "Evaluation of Incremental conductance and Firefly algorithm for PV MPPT application under partial shade condition," in 2016 IEEE 6th International Conference on Power Systems (ICPS), 2016, pp. 1-6: IEEE.
  • [28] M. Mokhlis, M. Ferfra, H. A. Vall, C. C. Ahmed, and A. Taouni, "Comparative study between the different MPPT techniques," in 2020 5th International Conference on Renewable Energies for Developing Countries (REDEC), 2020, pp. 1-6: IEEE.
  • [29] C. B. Prasad, S. K. Sonam, B. R. G. Reddy, and P. Harika, "A fuzzy logic based MPPT method for solar power generation," in 2017 International Conference on Intelligent Computing and Control Systems (ICICCS), 2017, pp. 1182-1186: IEEE.
  • [30] S. Ozdemir, N. Altin, and I. Sefa, "Fuzzy logic based MPPT controller for high conversion ratio quadratic boost converter," International Journal of Hydrogen Energy, vol. 42, no. 28, pp. 17748-17759, 2017.
  • [31] S. A. Rizzo and G. Scelba, "ANN based MPPT method for rapidly variable shading conditions," Applied Energy, vol. 145, pp. 124-132, 2015.
  • [32] M. Kumar, S. Kapoor, R. Nagar, A. J. I. J. o. A. R. i. E. Verma, Electronics, and I. Engineering, "Comparison between IC and fuzzy logic MPPT algorithm based solar PV system using boost converter," vol. 4, no. 6, pp. 4927-4939, 2015.
  • [33] M. K. Al-Nussairi, R. Bayindir, and E. Hossain, "Fuzzy logic controller for Dc-Dc buck converter with constant power load," in 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), 2017, pp. 1175-1179: IEEE.
  • [34] A. Safari and S. J. I. t. o. i. e. Mekhilef, "Simulation and hardware implementation of incremental conductance MPPT with direct control method using cuk converter," vol. 58, no. 4, pp. 1154-1161, 2010.
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Fuad Alhaj Omar 0000-0001-5969-2513

Publication Date March 1, 2023
Submission Date September 22, 2022
Acceptance Date November 4, 2022
Published in Issue Year 2023 Volume: 11 Issue: 1

Cite

IEEE F. Alhaj Omar, “COMPARATIVE PERFORMANCE ANALYSIS OF A FEED-FORWARD NEURAL NETWORK-BASED MPPT FOR RAPIDLY CHANGING CLIMATIC CONDITIONS”, KONJES, vol. 11, no. 1, pp. 71–86, 2023, doi: 10.36306/konjes.1179030.