WETTABILITY IMPROVEMENT OF PMMA FILMS WITH HIGH FREQUENCY RF PLASMAS
Year 2023,
Volume: 11 Issue: 2, 530 - 542, 01.06.2023
Zahide Tosun
,
Ayhan Ozmen
Abstract
Poly(methyl methacrylate) (PMMA) has a wide variety of applications due to its attractive physical and optical properties. Due to its hydrophobic (water-repellent) character, the surface of PMMA should be modified before being used in applications. In this study, the surface of PMMA films were modified by 40.68 MHz high frequency CCP (capacitive-coupled plasma) RF system with nitrogen (N) and argon (Ar) gases. The experiments carried out under various plasma powers while the pressure and treatment time were kept constant. The wettability of the plasma treated surfaces was analyzed with contact angle and surface free energy (SFE) measurements. Also, the change in the chemical structure of the surfaces was investigated with X-ray photoelectron spectroscopy (XPS). The results showed that all plasma treatments enhanced the hydrophilicity of the surfaces and the lowest contact angle values obtained at high plasma power. The total SFE of the treated surfaces increased with power and the main contribution to total SFE came from polar components. The polar groups formation on the surface after plasma treatment was proved with XPS results. Hence, it was found that high frequency CCP RF plasmas can be used effectively to obtain hydrophilic polymer surfaces.
References
- [1] M.S.A. Hussien, M.I. Mohammed, and I. S. Yahia, “Flexible photocatalytic membrane based on CdS/PMMA polymeric nanocomposite films: multifunctional materials,” Environmental Science and Pollution Research, vol. 2, pp. 45225–45237, 2020.
- [2] P.M.T. García, R.P. Merino, J.D. Cruz, J.E. Espinosa, R. Aceves, E.M. Barbosa, and O.P., Moreno, “Luminescent properties of Eu3+-doped hybrid SiO₂-PMMA material for photonic applications,” Micromachines, vol. 9(441), pp. 1-10, 2018.
- [3] A. Trentin, A.L. Gasparini, F.A. Faria, S.V. Harb, F.C. Santos, S.H. Pulcinelli, C.V. Santilli, and P. Hammer, “Barrier properties of high performance PMMA-silica anticorrosion coatings,” Progress in Organic Coatings, vol. 138 (105398), pp. 1-13, 2020.
- [4] T. Yamamoto, T. Yamada, A. Miyake, H. Makino, and N. Yamamoto, “A review of the properties and applications of poly(methyl methacrylate) (PMMA),” Polym. Rev., vol. 55 , pp. 678-705, 2015.
- [5] H. Lin, D.E. Day, and J.O. Stoffer, “Optical and mechanical properties of optically transparent poly(methyl methacrylate) composites,” Polym. Eng. Sci, vol. 32, pp. 344-350, 1992.
- [6] S. Patel, R.G. Thakar, J. Wong, S.D. McLeod, and S. Li, “Control of cell adhesion on poly(methyl methacrylate),” Biomaterials, vol. 27, pp. 2890-2897, 2006.
- [7] A.K. Riau, D. Mondal, G.H.F. Yam, M. Setiawan, B. Liedberg, S.S. Venkatraman, and J.S. Mehta, “Surface modification of PMMA to improve adhesion to corneal substitutes in a synthetic core-skirt keratoprosthesis,” ACS Appl Mater Interfaces, vol. 7, pp. 21690-21702, 2015.
- [8] M. Herrero, R. Navarroa, Y. Grohens, H. Reinecke, and C. Mijangosa, “Controlled wet-chemical modification and bacterial adhesion on PVC-surfaces,” Polymer Degradation and Stability, vol. 91, pp. 1915-1918, 2006.
- [9] S.K. Nemani, R.K. Annavarapu, R. Mohammadian, A. Raiyan, J. Heil, M.A., Haque, A. Abdelaal, and H. Sojoudi, “Surface modification of polymers: methods and applications,” Advanced Materials Interface, vol. 5(1801247), pp. 1-26, 2018.
- [10] S. Tajima, and K. Komvopoulos, “Effect of reactive species on surface crosslinking of plasma-treated polymers investigated by surface force microscopy,” Appl. Phys. Lett., vol. 89( 124102), pp. 1-3. 2006.
- [11] C. Borcia, G. Borcia, and N. Dumitrascu, “Relating plasma surface modification to polymer characteristics,” Applied Physics A , vol. 90, pp. 507-515, 2008.
- [12] J.P. Booth, M. Mozetic, A. Nikiforov, and C. Oehr, “Foundations of plasma surface functionalization of polymers for industrial and biological applications,” Plasma Sources Science and Technology, vol. 31 (103001), pp. 1-28. 2022.
- [13] A. Vesel, and M. Mozetic, “New developments in surface functionalization of polymers using controlled plasma treatments,” Journal of Physics D: Applied Physics, vol. 50(293001), pp. 1-37, 2017.
- [14] S. Guruvenket, G.M. Rao, M. Komath, and A.M. Raichur, “Plasma surface modification of polystyrene and polyethylene,” Applied Surface Science, vol. 236, pp. 278-284, 2004.
- [15] C. Canal, R. Molina, E. Bertran, and P. Erra, “Wettability, ageing and recovery process of plasma-treated polyamide 6,” Journal of Adhesion Science and Technology, vol. 18, pp. 1077-1089, 2012.
- [16] C. Su, F. Lin, J. Jiang, H. Shao, and N. Chen, “Mechanical and electrical properties of graphene-coated polyimide yarns improved by nitrogen plasma pre-treatment,” Textile Research Journal, vol. 91, pp. 1-14, 2021.
- [17] A. Davoodi, H.H. Zadeh, M.D. Joupari, M.A. Sahebalzamani, M.R. Khani, and S. Shahabi, “Physicochemical- and biocompatibility of oxygen and nitrogen plasma treatment using a PLA scaffold,” AIP Advances, vol. 10 (125205), pp.1-8, 2020.
- [18] L. Mosera, R. Steinera, F. Leipold, R. Reichle, L. Marota, and E. Meyera, “Plasma cleaning of ITER first mirrors in magnetic field,” Journal of Nuclear Materials, vol. 463, pp. 940-943, 2015.
- [19] H. Liu, Y. Pei, D. Xie, X. Deng, Y.X. Leng, Y. Jin, and N. Huanga, “Surface modification of ultra-high molecular weight polyethylene (UHMWPE) by argon plasma,” Applied Surface Science, vol. 256, pp. 3941-3945, 2010.
- [20] G. Tan, R. Chen, C. Ning, L. Zhang, X. Ruan, and J. Liao, “Effects of argon plasma treatment on surface characteristic of photopolymerization PEGDA–HEMA hydrogels,” Journal of Applied Polymer Science, vol. 124, pp. 459-465, 2011.
- [21] P. Gröning, M. Collaud, G. Dietler, and L. Schlapbach, “Plasma modification of polymethylmethacrylate and polyethyleneterephthalate surfaces,” Journal of Applied Physics vol. 76, pp. 887-892, 1994.
- [22] M. R. Yari, M. S. Zakerhamidi, and H. Ghomi, “Glow discharge plasma stabilization of azo dye
on PMMA polymer,” Scientific Reports, vol. 12 (18358), pp. 1-13, 2022.
- [23] A. Sikora, D. Czylkowski, B. Hrycak, M. M. Dusanowska, M. Łapiński, M. Dors, and M. Jasiński, “Surface modifcation of PMMA polymer and its composites with ¬PC61BM fullerene derivative using an atmospheric pressure microwave argon plasma sheet,” Scientifc Reports, vol. 11(9270), pp. 1-17, 2021.
- [24] M. Jafari, and D. Dorranian, “Surface modification of PMMA polymer in the interaction with oxygen-argon RF plasma,” Journal of Theoretical and Applied Physics, vol. 5, pp. 59-66, 2011.
- [25] N. Puač, Z.L. Petrović, M. Radetić, and A. Djordjević, “Low pressure RF capacitively coupled plasma reactor for modification of seeds,” Materials Science Forum, vol. 494, pp. 291-296, 2005.
- [26] S. Kitova, M. Minchev, and G. Danev, “Soft plasma treatment of polymer surfaces,” Journal of Optoelectronics and Advanced Materials, vol. 7, pp. 249-252, 2005.
- [27] M. Żenkiewicz, “Methods for the calculation of surface free energy of solids,” Journal of Achievements in Materials and Manufacturing Engineering, vol. 24, pp. 137-145, 2007.
- [28] R. N. Shimizu, and N. R. Demarquette, “Evaluation of surface energy of solid polymers using different models,” Journal of Applied Polymer Science, vol. 76, pp. 1831-1845, 2000.
- [29] D. Dorranian, Z. Abedini, A. Hojabri, and M. Ghoranneviss, “Structural and optical characterization of PMMA surface treated in low power nitrogen and oxygen RF plasmas,” Journal of Non-Oxide Glasses, vol.1, pp. 217-229, 2009.
- [30] S. Mukhopadhyay, S.S. Roy, R.A. D'Sa, A. Mathur, R.J. Holmes, and J.A. McLaughlin, “Nanoscale surface modifications to control capillary flow characteristics in PMMA microfluidic devices,” Nanoscale Research Letters, vol. 6(411), pp. 1-12, 2011.
- [31] A. Vesel and M., Mozetic, “Modification of PET surface by nitrogen plasma treatment,” Journal of Physics: Conference Series, vol. 100, 2008.
- [32] M. Gilliam, S. Farhat, A. Zand, B. Stubbs, M. Magyar, and G. Garner, “Atmospheric plasma surface modification of PMMA and PP micro‐particles,” Plasma Processes and Polymers, vol.11, pp. 1037-1043, 2014.
- [33] L.J. Gerenser, J.M. Grace, G. Apai, and P. M. Thompson, “Surface chemistry of nitrogen plasma‐treated poly(ethylene‐2,6‐naphthalate): XPS, HREELS and static SIMS analysis”, Surf. Interface Anal., vol. 29, pp. 12-22, 2000.
- [34] S. Tang, and H. S. Choi, “Comparison of low-and atmospheric-pressure radio frequency plasma treatments on the surface modification of poly(methyl methacrylate) plates,” The Journal of Physical Chemistry C, vol.112, pp. 4712-4718, 2008.
- [35] E. Vassallo, A. Cremona, F. Ghezzi, and D. Ricci, “Characterization by optical emission spectroscopy of an oxygen plasma used for improving PET wettability,” Vacuum, vol. 84, pp. 902-906, 2010.
- [36] M. Mavadat, M. Ghasamzadeh-Barvaz, S. Turgeon, C. Duchesne, and G. Laroche, “Correlation between the plasma characteristics and the surface chemistry of plasma-treated polymers through partial least-squares analysis,” Langmuir, vol. 29, pp. 15859-15867, 2013.
YÜKSEK FREKANSLI RF PLAZMALAR İLE PMMA FİLMLERİNİN ISILABİLİRLİĞİNİN İYİLEŞTİRİLMESİ
Year 2023,
Volume: 11 Issue: 2, 530 - 542, 01.06.2023
Zahide Tosun
,
Ayhan Ozmen
Abstract
Poli(metil metakrilat) (PMMA) ilgi çekici fiziksel ve optik özelliklerinden dolayı çok çeşitli uygulamalara sahiptir. PMMA ın hidrofobik (suyu itici) özelliğinden dolayı uygulamalarda kullanılmadan önce yüzeyinin işlenmesi gerekmektedir. Bu çalışmada, PMMA filmlerinin yüzeyleri azot (N) ve argon (Ar) gazları ile 40.68 MHz yüksek frekanslı CCP (kapasitif eşlemeli) RF sistemi kullanılarak işlenmiştir. Deneyler, basınç ve işleme süresi sabit tutularak çeşitli plazma güçlerinde gerçekleştirilmiştir. Plazma uygulanmış yüzeylerin ıslanabilirliği, temas açısı ve yüzey serbest enerji ölçümleri (SFE) ile analiz edilmiştir. Ayrıca X-ışını fotoelektron spektroskopisi (XPS) ile yüzeylerin kimyasal yapısındaki değişim incelenmiştir. Sonuçlar, tüm plazma işlemlerinin yüzeylerin hidrofilikliğini arttırdığını göstermiş ve en düşük temas açı değerleri ise yüksek plazma gücünde elde edilmiştir. İşlenmiş yüzeylerin toplam yüzey serbest enerjisi plazma gücü ile doğru orantılı olarak artmış ve toplam yüzey serbest enerjisine ana katkı polar bileşenden gelmiştir. Plazma ile işleme sonrası yüzeyde oluşan polar grupların varlığı XPS sonuçlarıyla doğrulanmıştır. Böylece yüksek frekanslı CCP RF plazmalarının hidrofilik polimer yüzeyleri elde etme etkin bir şekilde kullanılabileceği bulunmuştur.
References
- [1] M.S.A. Hussien, M.I. Mohammed, and I. S. Yahia, “Flexible photocatalytic membrane based on CdS/PMMA polymeric nanocomposite films: multifunctional materials,” Environmental Science and Pollution Research, vol. 2, pp. 45225–45237, 2020.
- [2] P.M.T. García, R.P. Merino, J.D. Cruz, J.E. Espinosa, R. Aceves, E.M. Barbosa, and O.P., Moreno, “Luminescent properties of Eu3+-doped hybrid SiO₂-PMMA material for photonic applications,” Micromachines, vol. 9(441), pp. 1-10, 2018.
- [3] A. Trentin, A.L. Gasparini, F.A. Faria, S.V. Harb, F.C. Santos, S.H. Pulcinelli, C.V. Santilli, and P. Hammer, “Barrier properties of high performance PMMA-silica anticorrosion coatings,” Progress in Organic Coatings, vol. 138 (105398), pp. 1-13, 2020.
- [4] T. Yamamoto, T. Yamada, A. Miyake, H. Makino, and N. Yamamoto, “A review of the properties and applications of poly(methyl methacrylate) (PMMA),” Polym. Rev., vol. 55 , pp. 678-705, 2015.
- [5] H. Lin, D.E. Day, and J.O. Stoffer, “Optical and mechanical properties of optically transparent poly(methyl methacrylate) composites,” Polym. Eng. Sci, vol. 32, pp. 344-350, 1992.
- [6] S. Patel, R.G. Thakar, J. Wong, S.D. McLeod, and S. Li, “Control of cell adhesion on poly(methyl methacrylate),” Biomaterials, vol. 27, pp. 2890-2897, 2006.
- [7] A.K. Riau, D. Mondal, G.H.F. Yam, M. Setiawan, B. Liedberg, S.S. Venkatraman, and J.S. Mehta, “Surface modification of PMMA to improve adhesion to corneal substitutes in a synthetic core-skirt keratoprosthesis,” ACS Appl Mater Interfaces, vol. 7, pp. 21690-21702, 2015.
- [8] M. Herrero, R. Navarroa, Y. Grohens, H. Reinecke, and C. Mijangosa, “Controlled wet-chemical modification and bacterial adhesion on PVC-surfaces,” Polymer Degradation and Stability, vol. 91, pp. 1915-1918, 2006.
- [9] S.K. Nemani, R.K. Annavarapu, R. Mohammadian, A. Raiyan, J. Heil, M.A., Haque, A. Abdelaal, and H. Sojoudi, “Surface modification of polymers: methods and applications,” Advanced Materials Interface, vol. 5(1801247), pp. 1-26, 2018.
- [10] S. Tajima, and K. Komvopoulos, “Effect of reactive species on surface crosslinking of plasma-treated polymers investigated by surface force microscopy,” Appl. Phys. Lett., vol. 89( 124102), pp. 1-3. 2006.
- [11] C. Borcia, G. Borcia, and N. Dumitrascu, “Relating plasma surface modification to polymer characteristics,” Applied Physics A , vol. 90, pp. 507-515, 2008.
- [12] J.P. Booth, M. Mozetic, A. Nikiforov, and C. Oehr, “Foundations of plasma surface functionalization of polymers for industrial and biological applications,” Plasma Sources Science and Technology, vol. 31 (103001), pp. 1-28. 2022.
- [13] A. Vesel, and M. Mozetic, “New developments in surface functionalization of polymers using controlled plasma treatments,” Journal of Physics D: Applied Physics, vol. 50(293001), pp. 1-37, 2017.
- [14] S. Guruvenket, G.M. Rao, M. Komath, and A.M. Raichur, “Plasma surface modification of polystyrene and polyethylene,” Applied Surface Science, vol. 236, pp. 278-284, 2004.
- [15] C. Canal, R. Molina, E. Bertran, and P. Erra, “Wettability, ageing and recovery process of plasma-treated polyamide 6,” Journal of Adhesion Science and Technology, vol. 18, pp. 1077-1089, 2012.
- [16] C. Su, F. Lin, J. Jiang, H. Shao, and N. Chen, “Mechanical and electrical properties of graphene-coated polyimide yarns improved by nitrogen plasma pre-treatment,” Textile Research Journal, vol. 91, pp. 1-14, 2021.
- [17] A. Davoodi, H.H. Zadeh, M.D. Joupari, M.A. Sahebalzamani, M.R. Khani, and S. Shahabi, “Physicochemical- and biocompatibility of oxygen and nitrogen plasma treatment using a PLA scaffold,” AIP Advances, vol. 10 (125205), pp.1-8, 2020.
- [18] L. Mosera, R. Steinera, F. Leipold, R. Reichle, L. Marota, and E. Meyera, “Plasma cleaning of ITER first mirrors in magnetic field,” Journal of Nuclear Materials, vol. 463, pp. 940-943, 2015.
- [19] H. Liu, Y. Pei, D. Xie, X. Deng, Y.X. Leng, Y. Jin, and N. Huanga, “Surface modification of ultra-high molecular weight polyethylene (UHMWPE) by argon plasma,” Applied Surface Science, vol. 256, pp. 3941-3945, 2010.
- [20] G. Tan, R. Chen, C. Ning, L. Zhang, X. Ruan, and J. Liao, “Effects of argon plasma treatment on surface characteristic of photopolymerization PEGDA–HEMA hydrogels,” Journal of Applied Polymer Science, vol. 124, pp. 459-465, 2011.
- [21] P. Gröning, M. Collaud, G. Dietler, and L. Schlapbach, “Plasma modification of polymethylmethacrylate and polyethyleneterephthalate surfaces,” Journal of Applied Physics vol. 76, pp. 887-892, 1994.
- [22] M. R. Yari, M. S. Zakerhamidi, and H. Ghomi, “Glow discharge plasma stabilization of azo dye
on PMMA polymer,” Scientific Reports, vol. 12 (18358), pp. 1-13, 2022.
- [23] A. Sikora, D. Czylkowski, B. Hrycak, M. M. Dusanowska, M. Łapiński, M. Dors, and M. Jasiński, “Surface modifcation of PMMA polymer and its composites with ¬PC61BM fullerene derivative using an atmospheric pressure microwave argon plasma sheet,” Scientifc Reports, vol. 11(9270), pp. 1-17, 2021.
- [24] M. Jafari, and D. Dorranian, “Surface modification of PMMA polymer in the interaction with oxygen-argon RF plasma,” Journal of Theoretical and Applied Physics, vol. 5, pp. 59-66, 2011.
- [25] N. Puač, Z.L. Petrović, M. Radetić, and A. Djordjević, “Low pressure RF capacitively coupled plasma reactor for modification of seeds,” Materials Science Forum, vol. 494, pp. 291-296, 2005.
- [26] S. Kitova, M. Minchev, and G. Danev, “Soft plasma treatment of polymer surfaces,” Journal of Optoelectronics and Advanced Materials, vol. 7, pp. 249-252, 2005.
- [27] M. Żenkiewicz, “Methods for the calculation of surface free energy of solids,” Journal of Achievements in Materials and Manufacturing Engineering, vol. 24, pp. 137-145, 2007.
- [28] R. N. Shimizu, and N. R. Demarquette, “Evaluation of surface energy of solid polymers using different models,” Journal of Applied Polymer Science, vol. 76, pp. 1831-1845, 2000.
- [29] D. Dorranian, Z. Abedini, A. Hojabri, and M. Ghoranneviss, “Structural and optical characterization of PMMA surface treated in low power nitrogen and oxygen RF plasmas,” Journal of Non-Oxide Glasses, vol.1, pp. 217-229, 2009.
- [30] S. Mukhopadhyay, S.S. Roy, R.A. D'Sa, A. Mathur, R.J. Holmes, and J.A. McLaughlin, “Nanoscale surface modifications to control capillary flow characteristics in PMMA microfluidic devices,” Nanoscale Research Letters, vol. 6(411), pp. 1-12, 2011.
- [31] A. Vesel and M., Mozetic, “Modification of PET surface by nitrogen plasma treatment,” Journal of Physics: Conference Series, vol. 100, 2008.
- [32] M. Gilliam, S. Farhat, A. Zand, B. Stubbs, M. Magyar, and G. Garner, “Atmospheric plasma surface modification of PMMA and PP micro‐particles,” Plasma Processes and Polymers, vol.11, pp. 1037-1043, 2014.
- [33] L.J. Gerenser, J.M. Grace, G. Apai, and P. M. Thompson, “Surface chemistry of nitrogen plasma‐treated poly(ethylene‐2,6‐naphthalate): XPS, HREELS and static SIMS analysis”, Surf. Interface Anal., vol. 29, pp. 12-22, 2000.
- [34] S. Tang, and H. S. Choi, “Comparison of low-and atmospheric-pressure radio frequency plasma treatments on the surface modification of poly(methyl methacrylate) plates,” The Journal of Physical Chemistry C, vol.112, pp. 4712-4718, 2008.
- [35] E. Vassallo, A. Cremona, F. Ghezzi, and D. Ricci, “Characterization by optical emission spectroscopy of an oxygen plasma used for improving PET wettability,” Vacuum, vol. 84, pp. 902-906, 2010.
- [36] M. Mavadat, M. Ghasamzadeh-Barvaz, S. Turgeon, C. Duchesne, and G. Laroche, “Correlation between the plasma characteristics and the surface chemistry of plasma-treated polymers through partial least-squares analysis,” Langmuir, vol. 29, pp. 15859-15867, 2013.