Araştırma Makalesi
BibTex RIS Kaynak Göster

THE INFLUENCE OF FUSED FILAMENT FABRICATION PARAMETERS ON THE FRACTURE BEHAVIOR OF PLA SPECIMENS CONSIDERING ENERGY CONSUMPTION

Yıl 2024, Cilt: 12 Sayı: 2, 451 - 464, 01.06.2024
https://doi.org/10.36306/konjes.1402235

Öz

Fused Filament Fabrication (FFF) is a 3D (three-dimensional) printing technology that allows the production of polymers with a wide range of infill densities and unlimited geometric variations. Because of this flexibility, mechanical properties can be optimized by tuning printing parameters. However, the energy consumption during fabrication varies significantly for different printing settings. In the present study, both maximum fracture force and minimum energy consumption of 3D printed PLA (Polylactic Acid) are achieved together by optimizing the printing parameters using CPA (Cyclical Parthenogenesis Algorithm) optimization algorithm. Firstly, a quasi-static penetration test is performed to measure the maximum fracture force. The energy consumption of each specimen is also calculated. Then, maximum fracture force and energy consumption are modeled and integrated into the optimization algorithm. As a result, the three most convenient parameter levels are 84%, 6.83 mm, and 0.19 mm for infill ratio, specimen thickness, and layer height, respectively. While high infill ratio values and specimen thickness increase mechanical performance, these parameter levels are disadvantageous for energy consumption. As a result of optimization, parameters that provide balanced strength and energy consumption were obtained. Fracture force and energy consumption are 1829.87 N and 134.56 W, respectively for the validation experiment of the optimal solution.

Kaynakça

  • I. J. Solomon, P. Sevvel, and J. Gunasekaran, “A review on the various processing parameters in FDM,” Mater. Today Proc., vol. 37, no. Part 2, pp. 509–514, 2020, doi: 10.1016/j.matpr.2020.05.484.
  • C. Liu, B. Qian, X. Liu, L. Tong, and J. Qiu, “Additive manufacturing of silica glass using laser stereolithography with a top-down approach and fast debinding,” RSC Adv., vol. 8, no. 29, pp. 16344–16348, 2018, doi: 10.1039/c8ra02428f.
  • E. Aydoğan Güngör, “Production of Oxide Dispersion Strengthened Inconel 718 Alloys Using Conventional Powder Metallurgy and Additive Manufacturing Methods,” Konya J. Eng. Sci., vol. 8055, pp. 678–692, 2023, doi: 10.36306/konjes.1254946.
  • S. Singh, G. Singh, C. Prakash, and S. Ramakrishna, “Current status and future directions of fused filament fabrication,” J. Manuf. Process., vol. 55, no. April, pp. 288–306, 2020, doi: 10.1016/j.jmapro.2020.04.049.
  • C. Fonda, E. Canessa, and M. Zennaro, Low-Cost 3D Printing for Science, Education and Sustainable Development. 2013. [Online]. Available: http://sdu.ictp.it/3d/book.html [Accessed: Dec. 8, 2023]
  • R. Mendricky and D. Fris, “Analysis of the accuracy and the surface roughness of fdm/fff technology and optimisation of process parameters,” Teh. Vjesn., vol. 27, no. 4, pp. 1166–1173, 2020, doi: 10.17559/TV-20190320142210.
  • J. Kechagias, D. Chaidas, N. Vidakis, K. Salonitis, and N. M. Vaxevanidis, “Key parameters controlling surface quality and dimensional accuracy: a critical review of FFF process,” Mater. Manuf. Process., vol. 37, no. 9, pp. 963–984, 2022, doi: 10.1080/10426914.2022.2032144.
  • V. Cojocaru, D. Frunzaverde, C. O. Miclosina, and G. Marginean, “The Influence of the Process Parameters on the Mechanical Properties of PLA Specimens Produced by Fused Filament Fabrication—A Review,” Polymers (Basel)., vol. 14, no. 5, pp. 886-909, 2022, doi: 10.3390/polym14050886.
  • A. Pandzic, D. Hodzic, and A. Milovanovic, “Influence of carbon fibers on mechanical properties of materials in FDM technology,” Ann. DAAAM Proc. Int. DAAAM Symp., vol. 30, no. 1, pp. 545–554, 2019, doi: 10.2507/30th.daaam.proceedings.074.
  • O. Luzanin, D. Movrin, V. Stathopoulos, P. Pandis, T. Radusin, and V. Guduric, “Impact of processing parameters on tensile strength, in-process crystallinity and mesostructure in FDM-fabricated PLA specimens,” Rapid Prototyp. J., vol. 25, no. 8, pp. 1398–1410, 2019, doi: 10.1108/RPJ-12-2018-0316.
  • J. Giri, A. Chiwande, Y. Gupta, C. Mahatme, and P. Giri, “Effect of process parameters on mechanical properties of 3d printed samples using FDM process,” Mater. Today Proc., vol. 47, pp. 5856–5861, 2021, doi: 10.1016/j.matpr.2021.04.283.
  • A. Alafaghani and A. Qattawi, “Investigating the effect of fused deposition modeling processing parameters using Taguchi design of experiment method,” J. Manuf. Process., vol. 36, no. October, pp. 164–174, 2018, doi: 10.1016/j.jmapro.2018.09.025.
  • Ö. Bayraktar, G. Uzun, R. Çakiroğlu, and A. Guldas, “Experimental study on the 3D-printed plastic parts and predicting the mechanical properties using artificial neural networks,” Polym. Adv. Technol., vol. 28, no. 8, pp. 1044–1051, 2017, doi: 10.1002/pat.3960.
  • F. Kartal, C. Nazlı, Z. Yerlikaya, F. Şimşek, and M. H. Çetin, “Yapım Zamanı için Erimiş Birikim Modelleme İşlem Parametrelerinin Optimizasyonu”. Int. J. 3D Print. Tech. Dig. Ind., vol. 2, no. 1, pp. 97-104, 2018, https://dergipark.org.tr/en/pub/ij3dptdi/issue/36075/404817
  • V. Korkut, and H. Yavuz, “Açık-Kaynaklı 3B Yazıcılarda Enerji ve Zaman Gereksinimini Azaltmada Etkili Parametrelerin İncelenmesi.” J. Ins. Sci. Technol., vol. 12, no. 1, pp. 403-411, 2022, doi: 10.21597/jist.903159.
  • M. S. Kamer, Ş. Temiz, and A. Kaya, “Determination of Energy Consumption During The Tensile Test Sample Production in 3D Printer Working with The Fused Deposition Modeling Method. J. Inst. of Sci. Technol., vol. 13, no. 3, pp. 1998-2007, 2023, doi: 10.21597/jist.1198510.
  • Ş. Şirin, E. Aslan, and & G. Akincioğlu, “Effects of 3D-printed PLA material with different filling densities on coefficient of friction performance,”. Rapid Prototyp. J., vol. 29, no. 1, pp. 157-165, 2023, doi: 10.1108/RPJ-03-2022-0081.
  • G. Akıncıoğlu, and E. Aslan, “Investigation of tribological properties of amorphous thermoplastic samples with different filling densities produced by an additive manufacturing method,” Gazi Mühendislik Bilimleri Dergisi, vol. 8, no. 3, pp. 540-546, 2021, doi: 10.30855/gmbd.0705041.
  • G. Akıncıoğlu, E. Şirin, and E. Aslan, “Tribological characteristics of ABS structures with different infill densities tested by pin-on-disc,” Proc. Inst. Mech. Eng. J: J. Eng. Tribol., vol. 237, no. 5, pp. 1224-1234, 2023, doi: 10.1177/13506501231153521.
  • E. Aslan, and G. Akincioğlu, “Tribological Characterization of Two Different Elastic Polymers Produced via FDM,” International Symposium on Lightweight and Sustainable Polymeric Materials, pp. 189-200, 2023, doi: 10.1007/978-981-99-5567-1_14.
  • “Ender 3 S1 Pro 3D Printer” [Online] Available: https://www.creality.com/products/creality-ender-3-s1-pro-fdm-3d-printer [Accessed Jan. 31, 2024]
  • “ESUN PLA+ Technical Data Sheet” [Online] Available: https://www.esun3d.com/uploads/eSUN_PLA+-Filament_TDS_V4.0.pdf [Accessed Feb. 15, 2024]
  • S. Yilmaz, B. Eyri, O. Gul, N.G. Karsli, and T. Yilmaz, (2024). “Investigation of the influence of salt remelting process on the mechanical, tribological, and thermal properties of 3D‐printed poly (lactic acid) materials,” Polym. Eng. Sci., vol. 64, no.1, pp. 17-30, 2024, doi: 10.1002/pen.26526.
  • H. Lara-Padilla, C. Mendoza-Buenrostro, D. Cardenas, A. Rodriguez-Garcia, and C.A. Rodriguez, “Influence of controlled cooling in bimodal scaffold fabrication using polymers with different melting temperatures,” Mater., vol. 10, no. 6, pp. 640, 2017, doi:10.3390/ma10060640.
  • N. Lokesh, B. A. Praveena, J. Sudheer Reddy, V. K. Vasu, and S. Vijaykumar, “Evaluation on effect of printing process parameter through Taguchi approach on mechanical properties of 3D printed PLA specimens using FDM at constant printing temperature,” Mater. Today Proc., vol. 52, pp. 1288–1293, 2022, doi: 10.1016/j.matpr.2021.11.054.
  • Ö.F. Erkendirci, and B.Z.G. Haque, “Quasi-static penetration resistance behavior of glass fiber reinforced thermoplastic composites,” Compos. B. Eng., vol. 43, no. 8, pp. 3391-3405, 2012, doi: 10.1016/j.compositesb.2012.01.053.
  • A. Kaveh and A. Zolghadr, “Cyclical Parthenogenesis Algorithm: A new meta-heuristic algorithm,” Asian J. Civ. Eng., vol. 18, no. 5, pp. 673–701, 2017.
  • A. Kaveh and A. Zolghadr, “Cyclical Parthenogenesis Algorithm for guided modal strain energy based structural damage detection,” Appl. Soft Comput. J., vol. 57, pp. 250–264, 2017, doi: 10.1016/j.asoc.2017.04.010.
  • A. Kaveh and A. Zolghadr, “Optimal design of cyclically symmetric trusses with frequency constraints using cyclical parthenogenesis algorithm,” Adv. Struct. Eng., vol. 21, no. 5, pp. 739–755, 2018, doi: 10.1177/1369433217732492.
  • A. Kaveh and A. Zolghadr, “Cyclical parthenogenesis algorithm for layout optimization of truss structures with frequency constraints,” Eng. Optim., vol. 49, no. 8, pp. 1317–1334, 2017, doi: 10.1080/0305215X.2016.1245730.
  • S. Cicero, V. Martínez-Mata, L. Castanon-Jano, A. Alonso-Estebanez, and B. Arroyo, “Analysis of notch effect in the fracture behaviour of additively manufactured PLA and graphene reinforced PLA,” Theor. Appl. Fract. Mech., vol. 114, no. May, pp. 103032, 2021, doi: 10.1016/j.tafmec.2021.103032.
  • P. Cheng, Y. Peng, K. Wang, A. Le Duigou, S. Yao, and C. Chen, “Quasi-static penetration property of 3D printed woven-like ramie fiber reinforced biocomposites”. Compos. Struct., vol. 303, 116313, 2023, doi: 10.1016/j.compstruct.2022.116313.
  • I. I. Cuesta, E. Martinez-Pañeda, A. Díaz, and J. M. Alegre, (2019). “The Essential Work of Fracture parameters for 3D printed polymer sheets”. Mater. & Des., vol. 181, 107968, 2019, doi: 10.1016/j.matdes.2019.107968.
Yıl 2024, Cilt: 12 Sayı: 2, 451 - 464, 01.06.2024
https://doi.org/10.36306/konjes.1402235

Öz

Kaynakça

  • I. J. Solomon, P. Sevvel, and J. Gunasekaran, “A review on the various processing parameters in FDM,” Mater. Today Proc., vol. 37, no. Part 2, pp. 509–514, 2020, doi: 10.1016/j.matpr.2020.05.484.
  • C. Liu, B. Qian, X. Liu, L. Tong, and J. Qiu, “Additive manufacturing of silica glass using laser stereolithography with a top-down approach and fast debinding,” RSC Adv., vol. 8, no. 29, pp. 16344–16348, 2018, doi: 10.1039/c8ra02428f.
  • E. Aydoğan Güngör, “Production of Oxide Dispersion Strengthened Inconel 718 Alloys Using Conventional Powder Metallurgy and Additive Manufacturing Methods,” Konya J. Eng. Sci., vol. 8055, pp. 678–692, 2023, doi: 10.36306/konjes.1254946.
  • S. Singh, G. Singh, C. Prakash, and S. Ramakrishna, “Current status and future directions of fused filament fabrication,” J. Manuf. Process., vol. 55, no. April, pp. 288–306, 2020, doi: 10.1016/j.jmapro.2020.04.049.
  • C. Fonda, E. Canessa, and M. Zennaro, Low-Cost 3D Printing for Science, Education and Sustainable Development. 2013. [Online]. Available: http://sdu.ictp.it/3d/book.html [Accessed: Dec. 8, 2023]
  • R. Mendricky and D. Fris, “Analysis of the accuracy and the surface roughness of fdm/fff technology and optimisation of process parameters,” Teh. Vjesn., vol. 27, no. 4, pp. 1166–1173, 2020, doi: 10.17559/TV-20190320142210.
  • J. Kechagias, D. Chaidas, N. Vidakis, K. Salonitis, and N. M. Vaxevanidis, “Key parameters controlling surface quality and dimensional accuracy: a critical review of FFF process,” Mater. Manuf. Process., vol. 37, no. 9, pp. 963–984, 2022, doi: 10.1080/10426914.2022.2032144.
  • V. Cojocaru, D. Frunzaverde, C. O. Miclosina, and G. Marginean, “The Influence of the Process Parameters on the Mechanical Properties of PLA Specimens Produced by Fused Filament Fabrication—A Review,” Polymers (Basel)., vol. 14, no. 5, pp. 886-909, 2022, doi: 10.3390/polym14050886.
  • A. Pandzic, D. Hodzic, and A. Milovanovic, “Influence of carbon fibers on mechanical properties of materials in FDM technology,” Ann. DAAAM Proc. Int. DAAAM Symp., vol. 30, no. 1, pp. 545–554, 2019, doi: 10.2507/30th.daaam.proceedings.074.
  • O. Luzanin, D. Movrin, V. Stathopoulos, P. Pandis, T. Radusin, and V. Guduric, “Impact of processing parameters on tensile strength, in-process crystallinity and mesostructure in FDM-fabricated PLA specimens,” Rapid Prototyp. J., vol. 25, no. 8, pp. 1398–1410, 2019, doi: 10.1108/RPJ-12-2018-0316.
  • J. Giri, A. Chiwande, Y. Gupta, C. Mahatme, and P. Giri, “Effect of process parameters on mechanical properties of 3d printed samples using FDM process,” Mater. Today Proc., vol. 47, pp. 5856–5861, 2021, doi: 10.1016/j.matpr.2021.04.283.
  • A. Alafaghani and A. Qattawi, “Investigating the effect of fused deposition modeling processing parameters using Taguchi design of experiment method,” J. Manuf. Process., vol. 36, no. October, pp. 164–174, 2018, doi: 10.1016/j.jmapro.2018.09.025.
  • Ö. Bayraktar, G. Uzun, R. Çakiroğlu, and A. Guldas, “Experimental study on the 3D-printed plastic parts and predicting the mechanical properties using artificial neural networks,” Polym. Adv. Technol., vol. 28, no. 8, pp. 1044–1051, 2017, doi: 10.1002/pat.3960.
  • F. Kartal, C. Nazlı, Z. Yerlikaya, F. Şimşek, and M. H. Çetin, “Yapım Zamanı için Erimiş Birikim Modelleme İşlem Parametrelerinin Optimizasyonu”. Int. J. 3D Print. Tech. Dig. Ind., vol. 2, no. 1, pp. 97-104, 2018, https://dergipark.org.tr/en/pub/ij3dptdi/issue/36075/404817
  • V. Korkut, and H. Yavuz, “Açık-Kaynaklı 3B Yazıcılarda Enerji ve Zaman Gereksinimini Azaltmada Etkili Parametrelerin İncelenmesi.” J. Ins. Sci. Technol., vol. 12, no. 1, pp. 403-411, 2022, doi: 10.21597/jist.903159.
  • M. S. Kamer, Ş. Temiz, and A. Kaya, “Determination of Energy Consumption During The Tensile Test Sample Production in 3D Printer Working with The Fused Deposition Modeling Method. J. Inst. of Sci. Technol., vol. 13, no. 3, pp. 1998-2007, 2023, doi: 10.21597/jist.1198510.
  • Ş. Şirin, E. Aslan, and & G. Akincioğlu, “Effects of 3D-printed PLA material with different filling densities on coefficient of friction performance,”. Rapid Prototyp. J., vol. 29, no. 1, pp. 157-165, 2023, doi: 10.1108/RPJ-03-2022-0081.
  • G. Akıncıoğlu, and E. Aslan, “Investigation of tribological properties of amorphous thermoplastic samples with different filling densities produced by an additive manufacturing method,” Gazi Mühendislik Bilimleri Dergisi, vol. 8, no. 3, pp. 540-546, 2021, doi: 10.30855/gmbd.0705041.
  • G. Akıncıoğlu, E. Şirin, and E. Aslan, “Tribological characteristics of ABS structures with different infill densities tested by pin-on-disc,” Proc. Inst. Mech. Eng. J: J. Eng. Tribol., vol. 237, no. 5, pp. 1224-1234, 2023, doi: 10.1177/13506501231153521.
  • E. Aslan, and G. Akincioğlu, “Tribological Characterization of Two Different Elastic Polymers Produced via FDM,” International Symposium on Lightweight and Sustainable Polymeric Materials, pp. 189-200, 2023, doi: 10.1007/978-981-99-5567-1_14.
  • “Ender 3 S1 Pro 3D Printer” [Online] Available: https://www.creality.com/products/creality-ender-3-s1-pro-fdm-3d-printer [Accessed Jan. 31, 2024]
  • “ESUN PLA+ Technical Data Sheet” [Online] Available: https://www.esun3d.com/uploads/eSUN_PLA+-Filament_TDS_V4.0.pdf [Accessed Feb. 15, 2024]
  • S. Yilmaz, B. Eyri, O. Gul, N.G. Karsli, and T. Yilmaz, (2024). “Investigation of the influence of salt remelting process on the mechanical, tribological, and thermal properties of 3D‐printed poly (lactic acid) materials,” Polym. Eng. Sci., vol. 64, no.1, pp. 17-30, 2024, doi: 10.1002/pen.26526.
  • H. Lara-Padilla, C. Mendoza-Buenrostro, D. Cardenas, A. Rodriguez-Garcia, and C.A. Rodriguez, “Influence of controlled cooling in bimodal scaffold fabrication using polymers with different melting temperatures,” Mater., vol. 10, no. 6, pp. 640, 2017, doi:10.3390/ma10060640.
  • N. Lokesh, B. A. Praveena, J. Sudheer Reddy, V. K. Vasu, and S. Vijaykumar, “Evaluation on effect of printing process parameter through Taguchi approach on mechanical properties of 3D printed PLA specimens using FDM at constant printing temperature,” Mater. Today Proc., vol. 52, pp. 1288–1293, 2022, doi: 10.1016/j.matpr.2021.11.054.
  • Ö.F. Erkendirci, and B.Z.G. Haque, “Quasi-static penetration resistance behavior of glass fiber reinforced thermoplastic composites,” Compos. B. Eng., vol. 43, no. 8, pp. 3391-3405, 2012, doi: 10.1016/j.compositesb.2012.01.053.
  • A. Kaveh and A. Zolghadr, “Cyclical Parthenogenesis Algorithm: A new meta-heuristic algorithm,” Asian J. Civ. Eng., vol. 18, no. 5, pp. 673–701, 2017.
  • A. Kaveh and A. Zolghadr, “Cyclical Parthenogenesis Algorithm for guided modal strain energy based structural damage detection,” Appl. Soft Comput. J., vol. 57, pp. 250–264, 2017, doi: 10.1016/j.asoc.2017.04.010.
  • A. Kaveh and A. Zolghadr, “Optimal design of cyclically symmetric trusses with frequency constraints using cyclical parthenogenesis algorithm,” Adv. Struct. Eng., vol. 21, no. 5, pp. 739–755, 2018, doi: 10.1177/1369433217732492.
  • A. Kaveh and A. Zolghadr, “Cyclical parthenogenesis algorithm for layout optimization of truss structures with frequency constraints,” Eng. Optim., vol. 49, no. 8, pp. 1317–1334, 2017, doi: 10.1080/0305215X.2016.1245730.
  • S. Cicero, V. Martínez-Mata, L. Castanon-Jano, A. Alonso-Estebanez, and B. Arroyo, “Analysis of notch effect in the fracture behaviour of additively manufactured PLA and graphene reinforced PLA,” Theor. Appl. Fract. Mech., vol. 114, no. May, pp. 103032, 2021, doi: 10.1016/j.tafmec.2021.103032.
  • P. Cheng, Y. Peng, K. Wang, A. Le Duigou, S. Yao, and C. Chen, “Quasi-static penetration property of 3D printed woven-like ramie fiber reinforced biocomposites”. Compos. Struct., vol. 303, 116313, 2023, doi: 10.1016/j.compstruct.2022.116313.
  • I. I. Cuesta, E. Martinez-Pañeda, A. Díaz, and J. M. Alegre, (2019). “The Essential Work of Fracture parameters for 3D printed polymer sheets”. Mater. & Des., vol. 181, 107968, 2019, doi: 10.1016/j.matdes.2019.107968.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliğinde Optimizasyon Teknikleri, Malzeme Tasarım ve Davranışları
Bölüm Araştırma Makalesi
Yazarlar

Osman Öztürk 0000-0002-2814-6867

Muhammed Arif Şen 0000-0002-6081-2102

Mevlüt Aydın 0000-0001-5457-8340

Yayımlanma Tarihi 1 Haziran 2024
Gönderilme Tarihi 8 Aralık 2023
Kabul Tarihi 1 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 2

Kaynak Göster

IEEE O. Öztürk, M. A. Şen, ve M. Aydın, “THE INFLUENCE OF FUSED FILAMENT FABRICATION PARAMETERS ON THE FRACTURE BEHAVIOR OF PLA SPECIMENS CONSIDERING ENERGY CONSUMPTION”, KONJES, c. 12, sy. 2, ss. 451–464, 2024, doi: 10.36306/konjes.1402235.